This report presents a state-of-the-art multimodality imaging device that combines multi-spectral optoacoustic microscopy (OAM) and optical coherence tomography (OCT) to chart absorbers in live tadpoles (Xenopus laevis) accurately. The OAM channel captures maps of five internal contrast agents: melanin, hemoglobin, collagen, glucose, and lipids. A novel method was developed to achieve this by assuming that each voxel in the 3D-OAM image exhibits a single chromophore contributing to the optoacoustic signal. The device is powered by a single optical source (SuperK Compact, NKT Photonics) that operates across an ultra-wide spectral range of 450 to 2400 nm. The set-up was optimized by minimizing optical aberrations and attenuation on optical components to stimulate the sample effectively. Using optical pulses of 2 ns duration and a repetition rate of 20 kHz, the device imaged tadpoles in their embryonic stage at multiple wavelengths, using narrow spectral windows of 25 nm bandwidth within the broad spectrum of the supercontinuum source at a time. In addition, an ultra-high-resolution OCT imaging channel operating at 1300 nm (spectral bandwidth 180 nm) was created and incorporated into the device. The OCT channel, also powered by a commercial supercontinuum source (SuperK EXTREME EXR9, NKT Photonics), was used for guidance purposes and to help determine the location of the chromophores.
In conventional optoacoustic microscopy, nanosecond pulse duration lasers are employed. When a laser delivering shorter pulse durations is used, it is expected that, from a theoretical point of view, broader, higher-frequency acoustic waves to be generated, therefore a better axial resolution of the instrument. In the present report, this advantage, offered by a picosecond duration pulse laser, to experimentally demonstrate that the axial resolution of an optoacoustic microscopy instrument can be enhanced was exploited. In comparison to a 2 ns pulse duration, an improvement in the axial resolution of ~50% is demonstrated by using excitations with pulses of duration ⪅100 ps. Details of an optoacoustic microscopy instrument, operating at 532 nm, capable to provide high-resolution axial and lateral optoacoustic images, are also presented. The capabilities of the instrument are demonstrated by in-vivo images of Xenopus laevis brain with a similar ~ 3.8 μm lateral resolution throughout the whole axial imaging range.
Conventional optoacoustic microscopy (OAM) instruments have at their core a nanosecond pulse duration laser. If lasers with a shorter pulse duration are used, broader, higher frequency ultrasound waves are expected to be generated and as a result, the axial resolution of the instrument is improved. Here, we exploit the advantage offered by a picosecond duration pulse laser to enhance the axial resolution of an OAM instrument. In comparison to an instrument equipped with a 2-ns pulse duration laser, an improvement in the axial resolution of 50% is experimentally demonstrated by using excitation pulses of only 85 ps. To illustrate the capability of the instrument to generate high-quality optoacoustic images, en-face, in-vivo images of the brain of Xenopus laevis tadpole are presented with a lateral resolution of 3.8 μm throughout the entire axial imaging range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.