Ariel is the M4 mission of the ESA’s Cosmic Vision Program 2015-2025, whose aim is to characterize by lowresolution transit spectroscopy the atmospheres of over one thousand warm and hot exoplanets orbiting nearby stars. It has been selected by ESA in March 2018 and adopted in November 2020 to be flown, then, in 2029. It is the first survey mission dedicated to measuring the chemical composition and thermal structures of the atmospheres of hundreds of transiting exoplanets, in order to enable planetary science far beyond the boundaries of the Solar System. The Payload (P/L) is based on a cold section (PLM – Payload Module) working at cryogenic temperatures and a warm section, located within the Spacecraft (S/C) Service Vehicle Module (SVM) and hosting five warm units operated at ambient temperature (253-313 K). The P/L and its electrical, electronic and data handling architecture has been designed and optimized to perform transit spectroscopy from space during primary and secondary planetary eclipses in order to achieve a large set of unbiased observations to shed light and fully understand the nature of exoplanets atmospheres, retrieving information about planets interior and determining the key factors affecting the formation and evolution of planetary systems.
The Photon Counting Camera (PCC) is a single-photon sensitive laser communication camera that will launch on board the NASA PSYCHE spacecraft, part of the Deep-Space Optical Communication (DSOC) technology demonstration mission. The PCC comprises a single-photon sensitive Geiger-mode Avalanche Photo Diode (GmAPD) array connected to an electronics board designed to power, configure, and read out the array. The logic on the electronics board prevents accidental damage to the array, provides health and status information about the array and provides a simple interface to the downstream data processing modules. The array and electronics board are mounted into the chassis, which provides precise alignment between the optics bench and the detector as well as a path to radiate waste heat. We discuss the current design of the camera, including the electronic, thermal, and structural design. We also discuss some of the design challenges and our roadmap to building the flight unit.
Delivery of large volumes of data from low-Earth orbit to ground is challenging due to the short link durations associated with direct-to-Earth links. The short ranges that are typical for such links enable high data rates with small terminals. While the data rate for radio-frequency links is typically limited by available spectrum, optical links do not have such limitations. However, to date, demonstrations of optical links from low-Earth orbit to ground have been limited to ~10 to ~1000 Mbps. We describe plans for NASA’s TeraByte InfraRed Delivery (TBIRD) system, which will demonstrate a direct-to-Earth optical communication link from a CubeSat in low-Earth orbit at burst rates up to 200 Gbps. Such a link is capable of delivering >50 Terabytes per day from a small spacecraft to a single small ground terminal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.