A high-energy white synchrotron x-ray beam enables penetration of relatively thick and highly absorbing samples. At the P61A White Beam Engineering Materials Science Beamline, operated by Helmholtz-Zentrum Hereon at the PETRA III ring of the Deutsches Elektronen-Synchrotron (DESY), a tailored x-ray radiography system has been developed to perform in-situ x-ray imaging experiments at high temporal resolution, taking advantage of the unprecedented x-ray beam flux delivered by ten successive damping wigglers. The imaging system is equipped with an ultrahigh-speed camera (Phantom v2640) enabling acquisition rates up to 25 kHz at maximal resolution and binned mode. The camera is coupled with optical magnification (5x, 10x) and focusing lenses to enable imaging with a pixel size of 1,35 micrometre. The scintillator screens are housed in a special nitrogen gas cooling environment to withstand the heat load induced by the beam, allowing spatial resolution to be optimized down to few micrometres. We present the current state of the system development, implementation and first results of in situ investigations, especially of the electron beam powder bed fusion (PBF-EB) process, where the details of the mechanism of crack and pore formation during processing of different powder materials, e.g. steels and Ni-based alloys, is not yet known.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.