Integrated optics has the potential to play a transformative role in astronomical instrumentation. It has already made a significant impact in the field of optical interferometry, through the use of planar waveguide arrays for beam combination and phase-shifting. Additionally, the potential benefits of micro-spectrographs based on array waveguide gratings have also been demonstrated.
Here we examine a new application of integrated optics, using ring resonators as notch filters to remove the signal from atmospheric OH emission lines from astronomical spectra. We also briefly discuss their use as frequency combs for wavelength calibration and as drop filters for Doppler planet searches. We discuss the theoretical requirements for ring resonators for OH suppression. We find that small radius (< 10 μm), high index contrast (Si or Si3N4) rings are necessary to provide an adequate free spectral range. The suppression depth, resolving power, and throughput for efficient OH suppression can be realised with critically coupled rings with high self-coupling coefficients.
We report on preliminary laboratory tests of our Si and Si3N4 rings and give details of their fabrication. We demonstrate high self-coupling coefficients (> 0:9) and good control over the free spectral range and wavelength separation of multi-ring devices. Current devices have Q ≈ 4000 and ≈ 10 dB suppression, which should be improved through further optimisation of the coupling coefficients. The overall prospects for the use of ring resonators in astronomical instruments is promising, provided efficient fibre-chip coupling can be achieved.
Conference Committee Involvement (3)
Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) VI
27 January 2025 | San Francisco, California, United States
Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) V
29 January 2024 | San Francisco, California, United States
Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV
30 January 2023 | San Francisco, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.