The Gamow Explorer will use Gamma Ray Bursts (GRBs) to: 1) probe the high redshift universe (z < 6) when the first stars were born, galaxies formed and Hydrogen was reionized; and 2) enable multi-messenger astrophysics by rapidly identifying Electro-Magnetic (IR/Optical/X-ray) counterparts to Gravitational Wave (GW) events. GRBs have been detected out to z ~ 9 and their afterglows are a bright beacon lasting a few days that can be used to observe the spectral fingerprints of the host galaxy and intergalactic medium to map the period of reionization and early metal enrichment. Gamow Explorer is optimized to quickly identify high-z events to trigger follow-up observations with JWST and large ground-based telescopes. A wide field of view Lobster Eye X-ray Telescope (LEXT) will search for GRBs and locate them with arc-minute precision. When a GRB is detected, the rapidly slewing spacecraft will point the 5 photometric channel Photo-z Infra-Red Telescope (PIRT) to identify high redshift (z < 6) long GRBs within 100s and send an alert within 1000s of the GRB trigger. An L2 orbit provides < 95% observing efficiency with pointing optimized for follow up by the James Webb Space Telescope (JWST) and ground observatories. The predicted Gamow Explorer high-z rate is <10 times that of the Neil Gehrels Swift Observatory. The instrument and mission capabilities also enable rapid identification of short GRBs and their afterglows associated with GW events. The Gamow Explorer will be proposed to the 2021 NASA MIDEX call and if approved, launched in 2028.
KEYWORDS: Sensors, Telescopes, Electronics, James Webb Space Telescope, Gamma radiation, Infrared telescopes, Monte Carlo methods, Electromagnetism, Control systems, Aerospace engineering
The Photo-z InfraRed Telescope (PIRT) is an instrument on the Gamow Explorer, currently proposed for a NASA Astrophysics Medium Explorer. PIRT works in tandem with a companion wide-field instrument, the Lobster Eye X-ray Telescope (LEXT), that will identify x-ray transients likely to be associated with high redshift gamma-ray bursts (GRBs) or electromagnetic counterparts to gravitational wave (GW) events. PIRT will gather the necessary data in order to identify GRB sources with redshift z >6, with an expected source localization better than 1 arcsec. A near real-time link to the ground will allow timely follow-up as a target of opportunity for large ground-based telescopes or the James Webb Space Telescope (JWST). PIRT will also allow localization and characterization of GW event counterparts. We discuss the instrument design, the on-board data processing approach, and the expected performance of the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.