This work reports the fabrication of large-area Au nanoantennas, tuned to 1400cm-1 , on a Si substrate for surfaceenhanced- infrared-absorption-spectroscopy. Two different kinds of nanoantennas are fabricated, namely nano-rods and nano-slits. Fabrication is achieved by E-beam lithography (EBL). The need for an adhesion layer is eliminated using our previously reported UV-ozone pre-treatment1. To our knowledge, this is the first time this technique is used to fabricate Au nanoantennas on Si without the need adhesion layer, while at the same time obtaining a strong adhesion. This UVozone treatment does not only speed up the fabrication process, it can potentially increase the enhancement quality due to the negative influence metallic adhesion layers can have on the plasmon resonance of Au nanoantennas2–4. Next to using the standard positive resist for EBL lithography, we also propose a workflow using a negative photoresist to make the nano-rod antennas, potentially speeding up the process by skipping the lift off procedure. Although the negative photoresist fabrication process still requires optimization, our first fabrication attempt show promising results. In order to get the optimal enhancement for a given wavelength, we used FTDT simulations to simulate the structure length, height, width and pitch. After successful simulations, the structures were fabricated and a comparison between the simulated results and fabricated structures was made, confirming the simulation results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.