Proceedings Article | 13 January 2003
KEYWORDS: Printing, CMYK color model, Control systems, RGB color model, 3D printing, Calibration, 3D acquisition, Profiling, Color management, Data conversion
Besides having CMY colorants, most of color printers include at lease one extra colorant, black (K), to increase the density for shadow colors and to reduce the colorants required for printing shadow colors. In recent years, CMYKcm, CMYKcmk (Cyan, Magenta, Yellow, blacK, light-cyan, light-magenta, and light-black), and CMYKOG (O and G stand for Orange, and Green) or CMYKOV (V stands for Violet) ink-sets have been used in printers to reduce graininess or to extend printer color gamut. No matter how many colorants are used, a printer is often configured as a three-channel printer to simplify the color mapping process. The traditional GCR/UCR approach has been widely applied for CMY to CMYK color separation. However, this approach is not flexible for controlling K usage locally; it does not guarantee reasonable gamut usage; and it does not work very well for more than CMYK colorants.
In order to solve the problems existed in traditional GCR approaches, a color separation method based on 3-D interpolation was developed. In this process, we first determine the color conversion for some important node points, which include primary colors, neutral colors, and other color ramps in the gamut surface. Then different interpolation approaches are applied to fill the entire 3-D lookup table. This approach solves the problem existed in traditional GCR that a lot of high-chroma shadow colors may be lost in the color separation step. It controls K usage globally as well as locally. It well controls ink limit in the entire gamut. It also works for the color separation for more than CMYK four colorants. Because it performs automatically without human interaction, it can be applied to general printer color calibration as well as ICC profile recreation and smart CMM implementation.