Endoscopes have been widely used for biomedical imaging applications like surgical guidance and diagnosis. In this project, we demonstrated a beam-shaping system to manipulate the illumination patterns at the distal tip of the multimode fiber by using the real-valued intensity transmission matrix of the MMF for endoscopic applications, which provides the potential to miniaturize the footprint of the structured illumination system and the endoscope geometry.
Osteoporosis is a disease that weakens bones increasing the possibility of bone fracture. The gold standard to diagnose osteoporosis is measuring bone mineral density (BMD). Since BMD only partly determines the strength of the bone, more information on chemical composition and microstructure is needed. Here, we implemented a novel dual-wavelength inverse Spatially Offset Raman Spectroscopy (SORS) to characterize tissue chemical composition covering both the fingerprint and high-wavenumber regions. This system provides a greater probing depth keeping the spectrometer setting constant. The results from hydroxyapatite (HA) and water phantom demonstrate the potential of the Raman system to assess bone mineral and matrix quality in-vivo.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.