Feature extraction plays a key role in the classification performance of synthetic aperture radar automatic target recognition (SAR-ATR). It is very crucial to choose appropriate features to train a classifier, which is prerequisite. Inspired by the great success of Bag-of-Visual-Words (BoVW), we address the problem of feature extraction by proposing a novel feature extraction method for SAR target classification. First, Gabor based features are adopted to extract features from the training SAR images. Second, a discriminative codebook is generated using K-means clustering algorithm. Third, after feature encoding by computing the closest Euclidian distance, the targets are represented by new robust bag of features. Finally, for target classification, support vector machine (SVM) is used as a baseline classifier. Experiments on Moving and Stationary Target Acquisition and Recognition (MSTAR) public release dataset are conducted, and the classification accuracy and time complexity results demonstrate that the proposed method outperforms the state-of-the-art methods.
Recently, multimodal biometric systems have received considerable research interest in many applications especially in the fields of security. Multimodal systems can increase the resistance to spoof attacks, provide more details and flexibility, and lead to better performance and lower error rate. In this paper, we present a multimodal biometric system based on face and ear, and propose how to exploit the extracted deep features from Convolutional Neural Networks (CNNs) on the face and ear images to introduce more powerful discriminative features and robust representation ability for them. First, the deep features for face and ear images are extracted based on VGG-M Net. Second, the extracted deep features are fused by using a traditional concatenation and a Discriminant Correlation Analysis (DCA) algorithm. Third, multiclass support vector machine is adopted for matching and classification. The experimental results show that the proposed multimodal system based on deep features is efficient and achieves a promising recognition rate up to 100 % by using face and ear. In addition, the results indicate that the fusion based on DCA is superior to traditional fusion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.