Enzymes are cellular protein machines using a variety of conformational changes to power fast biochemical catalysis. Our goal is to exploit the single-spin properties of the luminescent NV (nitrogen-vacancy) center in nanodiamonds to reveal the dynamics of an active enzyme complex at physiological conditions with the highest spatio-temporal resolution. Specifically attached to the membrane enzyme FoF1-ATP synthase, the NV sensor will report the adenosine triphosphate (ATP)-driven full rotation of Fo motor subunits in ten consecutive 36° steps. Conformational dynamics are monitored using either a double electron-electron resonance scheme or NV- magnetometry with optical readout or using NV- relaxometry with a superparamagnetic nanoparticle as the second marker attached to the same enzyme. First, we show how all photophysical parameters like individual size, charge, brightness, spectral range of fluorescence and fluorescence lifetime can be determined for the NV- center in a single nanodiamond held in aqueous solution by a confocal anti-Brownian electrokinetic trap (ABEL trap). Stable photon count rates of individual nanodiamonds and the absence of blinking allow for observation times of single nanodiamonds in solution exceeding hundreds of seconds. For the proposed quantum sensing of nanometer-sized distance changes within an active enzyme, we show that local magnetic field fluctuations can be detected all-optically by analyzing fluorescence lifetime changes of the NV- center in each nanodiamond in solution.
The human neurotensin receptor one (NTSR1) is a G protein-coupled receptor. The receptor is activated by a small peptide ligand neurotensin. NTSR1 can be expressed in HEK cells by stable transfection. Previously we used the fluorescent protein markers mRuby3 or mNeonGreen fused to NTSR1 for EMCCD-based Structured Illumination Microscopy (SIM) in living HEK cells. Ligand binding induced conformational changes in NTSR1 which triggered the intracellular signaling processes. Recent single-molecule studies revealed a dynamic monomer/dimer equilibrium of this receptor in artificial lipid bilayers. Here we report on the oligomerization state of human NTSR1 from living cells by trapping them into lipid nanodiscs. Briefly, SMALPs (styrene-maleic acid copolymer lipid nanoparticles) were produced directly from the plasma membranes of living HEK293T FlpIn cells. SMALPs with a diameter of 15 nm were soluble and stable. NTSR1 in SMALPs were analyzed by single-molecule intensity measurements one membrane patch at a time using a custom-built confocal anti-Brownian electrokinetic trap (ABEL trap) microscope. We found oligomerization changes before and after stimulation of the receptor with its ligand neurotensin.
Two decades ago, we introduced single-molecule FRET measurements to study subunit rotation in individual FoF1-ATP synthases in liposomes. The rotary motors of the enzyme are either driven by ATP hydrolysis, or by internal proton translocation. To counteract diffusive motion of a single enzyme in real time, we built a fast confocal anti-Brownian electrokinetic trap (invented by A. E. Cohen and W. E. Moerner) with laser focus pattern and electrode feedback. We recorded broad distributions of ATP-driven subunit rotation and changing rotor speed in time traces of single enzymes. Now we explore the speed limit by circumventing the biological regulatory controls.
G protein-coupled receptors (GPCRs) are a large superfamily of membrane proteins that are activated by extracellular small molecules or photons. Neurotensin receptor 1 (NTSR1) is a GPCR that is activated by neurotensin, i.e. a 13 amino acid peptide. Binding of neurotensin induces conformational changes in the receptor that trigger the intracellular signaling processes. While recent single-molecule studies have reported a dynamic monomer – dimer equilibrium of NTSR1 in vitro, a biophysical characterization of the oligomerization status of NTSR1 in living mammalian cells is complicated. Here we report on the oligomerization state of the human NTSR1 tagged with mRuby3 by dissolving the plasma membranes of living HEK293T cells into 10 nm-sized soluble lipid nanoparticles by addition of styrene-maleic acid copolymers (SMALPs). Single SMALPs were analyzed one after another in solution by multi-parameter single molecule spectroscopy including brightness, fluorescence lifetime and anisotropy for homoFRET. Brightness analysis was improved using single SMALP detection in a confocal ABELtrap for extended observation times in solution. A bimodal brightness distribution indicated a significant fraction of dimeric NTSR1 in SMALPs or in the plasma membrane, respectively, before addition of neurotensin.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.