The sole instrument on NASA’s ICESat-2 spacecraft shown in Figure 1 will be the Advanced Topographic Laser Altimeter System (ATLAS)1. The ATLAS is a Light Detection and Ranging (LIDAR) instrument; it measures the time of flight of the six transmitted laser beams to the Earth and back to determine altitude for geospatial mapping of global ice. The ATLAS laser beam is split into 6 main beams by a Diffractive Optical Element (DOE) that are reflected off of the earth and imaged by an 800 mm diameter Receiver Telescope Assembly (RTA). The RTA is composed of a 2-mirror telescope and Aft Optics Assembly (AOA) that collects and focuses the light from the 6 probe beams into 6 science fibers. Each fiber optic has a field of view on the earth that subtends 83 micro Radians. The light collected by each fiber is detected by a photomultiplier and timing related to a master clock to determine time of flight and therefore distance. The collection of the light from the 6 laser spots projected to the ground allows for dense cross track sampling to provide for slope measurements of ice fields. NASA LIDAR instruments typically utilize telescopes that are not diffraction limited since they function as a light collector rather than imaging function. The more challenging requirements of the ATLAS instrument require better performance of the telescope at the ¼ wave level to provide for improved sampling and signal to noise. NASA Goddard Space Flight Center (GSFC) contracted the build of the telescope to General Dynamics (GD). GD fabricated and tested the flight and flight spare telescope and then integrated the government supplied AOA for testing of the RTA before and after vibration qualification. The RTA was then delivered to GSFC for independent verification and testing over expected thermal vacuum conditions. The testing at GSFC included a measurement of the RTA wavefront error and encircled energy in several orientations to determine the expected zero gravity figure, encircled energy, back focal length and plate scale. In addition, the science fibers had to be aligned to within 10 micro Radians of the projected laser spots to provide adequate margin for operations on-orbit. This paper summarizes the independent testing and alignment of the fibers performed at the GSFC.
KEYWORDS: Cameras, Cryogenics, Photogrammetry, James Webb Space Telescope, Distortion, Error analysis, Metrology, Calibration, Received signal strength, Optical alignment
The alignment philosophy of the James Webb Space Telescope (JWST) Integrated Science Instrument
Module (ISIM) is such that the cryogenic changes in the alignment of the science instruments (SIs) and
telescope-related interfaces are captured in an alignment error budget. The SIs are aligned to the structure's
coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The
ISIM structure is thermally cycled and temperature-induced mechanical and structural changes are
concurrently measured to ensure they are within the predicted boundaries.
We report on the ISIM photogrammetry system and its role in the cryogenic verification of the ISIM
structure. We describe the cryogenic metrology error budget and the analysis and testing that was
performed on the ISIM mockup, a full scale aluminum model of the ISIM structure, to ensure that the
system design allows the metrology goals to be met, including measurement repeatability and distortion
introduced from the camera canister windows.
KEYWORDS: Photogrammetry, Nondestructive evaluation, Cameras, Metrology, James Webb Space Telescope, Cryogenics, Temperature metrology, Optical alignment, Space telescopes, Interfaces
The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space
astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science
Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM structure must meet
its requirements at the ~40K cryogenic operating temperature.
The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite
metrology. The ISIM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical,
structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important
component in the JWST Observatory alignment plan and must be verified.
We report on the planning for and preliminary testing of a cryogenic metrology system for ISIM based on photogrammetry.
Photogrammetry is the measurement of the location of custom targets via triangulation using images obtained at a suite of digital
camera locations and orientations. We describe metrology system requirements, plans, and ambient photogrammetric
measurements of a mock-up of the ISIM structure to design targeting and obtain resolution estimates. We compare these
measurements with those taken from a well known ambient metrology system, namely, the Leica laser tracker system.
This report describes the facility, experimental methods, characterizations, and uncertainty analysis of the Cryo-
Distortion Measurement Facility (CDMF) at the Goddard Space Flight Center (GSFC). This facility is designed to
measure thermal distortions of structural elements as the temperature is lowered from 320K to below 40 K over multiple
cycles, and is capable of unattended running and data logging. The first measurement is the change in length and any
bending of composite tubes with Invar end-fittings. The CDMF includes a chamber that is efficiently cooled with two
cryo-coolers (one single-stage and one two-stage) rather than with liquid cryogens. Five optical ports incorporate
sapphire radiation shields - transparent to the interferometer - on each of two shrouds and a fused silica vacuum-port
window. The change in length of composite tubes is monitored continuously with displacement-measuring
interferometers; and the rotations, bending, and twisting are measured intermittently with theodolites and a surface-figure
interferometer. Nickel-coated invar mirrors and attachment mechanisms were developed and qualified by test in
the CDMF. The uncertainty in measurement of length change of 0.4 m tubes is currently estimated at 0.9 micrometers.
The Wilkinson Microwave Anisotropy Probe (WMAP) measures anisotropy or temperature differences in the Cosmic Microwave Background (CMB) radiation with high angular resolution and sensitivity, yielding unprecedented accuracy. To achieve this measurement, WMAP’s back-to-back Gregorian telescopes focus microwave radiation into 20 feed horns connected to 10 differential microwave radiometers. Proper alignment of the telescope reflectors, feed horns, and radiometers at flight temperatures was essential to the mission success.
This paper will present the WMAP instrument metrology requirements and associated challenges, discuss the opto-mechanical tooling utilized to accomplish these objectives, and then give an overview of the metrology effort. The WMAP instrument integration effort included the following key metrology tasks: alignment and clocking of 20 microwave feed horns and mating microwave differencing assemblies within a focal plane assembly; alignment of a pair of primary and secondary reflectors composing back-to-back Gregorian telescopes; and the placement of the focal plane assembly and reflector system relative to each other, and as a unit on the spacecraft. WMAP environmental test metrology efforts included: reflector and truss thermal stability at 80 K; reflector and feed horn position verification at 90 K, and pre and post vibration and acoustic test reflector and feed horn position verification. The WMAP instrument integration and test objectives required the use of a photogrammetric camera, a laser tracker, a portable coordinate measuring machine (PCMM), and theodolites utilizing an electronic theodolite metrology system (ETMS) and autocollimation. The synergy of these metrology systems facilitated the successful characterization of the WMAP scientific instrument mechanical performance data at room temperature and flight temperatures, and correlation of the data to the analytical model. WMAP was launched on July 1, 2001, and flight data has confirmed the proper on-orbit instrument alignment was achieved.
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a 2001 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (< 0.3 degree(s) at 90 GHz) map of the cosmic microwave background radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.