The high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components from the echo signals and therefore can retrieve the aerosol optical properties and lidar ratio (i.e., the extinction-to-backscatter ratio) profiles directly, which is different from the traditional Mie lidar with assumed lidar ratio. Accurate aerosol profiles measurement are useful for air quality monitoring. In this paper, a spaceborne HSRL lidar system simulation model based iodine vapor cell filter was presented. According to three different atmosphere aerosol distribution models and the uncertainties of atmosphere temperature and pressure, the signal to noise ratio (SNR) and the relative errors profiles of the backscattering coefficients of this lidar was simulated theoretically in daytime and nighttime. The result shows that the errors of aerosol backscattering coefficients are smaller in the aerosols dense area than in the sparse area. As altitude increases, the relative error of backscattering coefficient is increased. The relative backscattering coefficient error is within 16.5% below 5 km with 30 m range resolution and 10 km horizontal resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.