Long optical storage times are an essential requirement to establish high-rate entanglement distribution over large distances using memory-based quantum repeaters. Rare earth ion-doped crystals are arguably well-suited candidates for building such quantum memories. Toward this end, we investigate the 795.32 nm 3H6 ↔ 3H4 transition of 1% thulium-doped yttrium gallium garnet crystal (Tm3+:Y3Ga5O12 : Tm3+:YGG). Most essentially, we find that the optical coherence time can reach 1.1 ms, and, using laser pulses, we demonstrate optical storage based on the atomic frequency comb (AFC) protocol up to 100 µs. In addition, we demonstrate multiplexed storage, including feed-forward selection, shifting, and filtering of spectral modes, as well as quantum state storage using members of non-classical photon pairs. Our results show that Tm:YGG can be a potential candidate for creating multiplexed quantum memories with long optical storage times.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.