Transparent electrodes are one of the basic elements of various electronic components. The paper presents the preliminary results related to novel method of ultrasonic spray coating used for fabrication of transparent flexible electrodes. Experiments were conducted by means of specially made laboratory setup composed of ultrasonic spray generator and XYZ plotter. In the first part of the paper diverse solvents were used to determine the crucial technological parameters such as atomization voltage and fluid flow velocity. Afterwards paint containing carbon nanotubes suspended in the two solvent system was prepared and deposited on the polyethylene terephthalate foil. Thickness, roughness and electrical measurements were performed to designate the relations of technological parameters of ultrasonic spray coating on thickness, roughness, sheet resistance and optical transmission of fabricated samples.
Thin composite layers based on polyacrylonitrile (PAN) and carbon nanotubes (CNT) were fabricated by means of spray coating with pneumatic atomization. Research was conducted to achieve transparent and flexible electrodes. Prepared suspensions in different proportions of functional phase provided good dispersion quality of CNTs and the stability. The carbon nanotubes were dispersed in dimethylformamide and then added to polyacrylonitrile solution. Suspension was sprayed onto Polyethylene terephthalate (PET) foil. After thermal treatment, samples were mechanically and electrically tested. Thanks to carbon nanomaterials used in prepared coatings, high electrical conductivity and mechanical resistance was observed. Use of a polyacrylonitrile guarantee the flexibility of electrodes and high potential in integration with polyacrylonitrile based fabrics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.