We present the first full-array optical characterizations of the 280 GHz aluminum-based superconducting microwave kinetic inductance detector (MKID) arrays developed at NIST, CO, USA for the CCAT Collaboration for observing galactic ecology, Sunyaev-Zel'dovich effect, galaxy evolution, and line intensity mapping. The main advantage of aluminum MKIDs is their lower 1/f noise compared to the alternative choice of titanium-nitride (TiN) MKIDs, which would reduce systematic drifts when mapping the sky. We will present the spectral response, polarization characteristics, detector efficiency, and noise equivalent power (NEP) under the relevant conditions for these detectors. Two aluminum and one TiN MKID arrays will form the detector arrays in the 280 GHz instrument module of the Prime-Cam. First light observations are expected in 2025.
Prime-Cam, a first-generation science instrument for the Atacama-based Fred Young Submillimeter Telescope, is being built by the CCAT Collaboration to observe at millimeter and submillimeter wavelengths using kinetic inductance detectors (KIDs). Prime-Cam’s 280 GHz instrument module will deploy with two aluminum-based KID arrays and one titanium nitride-based KID array, totaling ∼10,000 detectors at the focal plane, all of which have been fabricated and are currently undergoing testing. One complication of fielding large arrays of KIDs under dynamic loading conditions is tuning the detector tone powers to maximize signal-to-noise while avoiding bifurcation due to the nonlinear kinetic inductance. For aluminum-based KIDs, this is further complicated by additional nonlinear effects which couple tone power to resonator quality factors and resonant frequencies. While both nonequilibrium quasiparticle dynamics and two-level system fluctuations have been shown to give rise to qualitatively similar distortions, modeling these effects alongside nonlinear kinetic inductance is inefficient when fitting thousands of resonators on-sky with existing models. For this reason, it is necessary to have a detailed understanding of the nonlinear effects across relevant detector loading conditions, including how they impact on on-sky noise and how to diagnose the detector’s relative performance. We present a study of the competing nonlinearities seen in Prime-Cam’s 280 GHz aluminum KIDs, with a particular emphasis on the resulting distortions to the resonator line shape and how these impact detector parameter estimation.
The Epoch of Reionization Spectrometer (EoR-Spec) is an upcoming Line Intensity Mapping (LIM) instrument designed to study the evolution of the early universe (z = 3.5 to 8) by probing the redshifted [CII] 158 μm fine-structure line from aggregates of galaxies. The [CII] emission is an excellent tracer of star formation since it is the dominant cooling line from neutral gas heated by OB star light and thus can be used to probe the reionization of the early Universe due to star formation. EoR-Spec will be deployed on Prime-Cam, a modular direct-detection receiver for the 6-meter Fred Young Submillimeter Telescope (FYST), currently under construction by CPI Vertex Antennentechnik GmbH and to be installed near the summit of Cerro Chajnantor in the Atacama Desert. This instrument features an image plane populated with more than 6500 Microwave Kinetic Inductance Detectors (MKIDs) that are illuminated by a 4-lens optical design with a cryogenic, scanning Fabry-Perot Interferometer (FPI) at the pupil of the optical system. The FPI is designed to provide a spectral resolving power of R ∼ 100 over the full spectral range of 210–420 GHz. EoR-Spec will tomographically survey the E-COSMOS and E-CDFS fields with a depth of about 4000 hours over a 5 year period. Here we give an update on EoR-Spec’s final mechanical/optical design and the current status of fabrication, characterization and testing towards first light in 2026.
KEYWORDS: Tunable filters, Design, Field programmable gate arrays, Sensors, Signal to noise ratio, Digital signal processing, Signal filtering, Equipment, Prototyping
The next-generation mm/sub-mm/far-IR astronomy will in part be enabled by advanced digital signal processing (DSP) techniques. The Prime-Cam instrument of the Fred Young Submillimeter Telescope (FYST), featuring the largest array of submillimeter detectors to date, utilizes a novel overlap-channel polyphase synthesis filter bank (OC-PSB) for the AC biasing of detectors, implemented on a cutting-edge Xilinx Radio Frequency System on Chip (RFSoC). This design departs from traditional waveform look-up-table(LUT) in memory, allowing real-time, dynamic signal generation, enhancing usable bandwidth and dynamic range, and enabling microwave kinetic inductance detector (MKID) tracking for future readout systems. Results show that the OC-PSB upholds critical performance metrics such as signal-to-noise ratio (SNR) while offering additional benefits such as scalability. This paper will discuss DSP design, RFSoC implementation, and laboratory performance, demonstrating OC-PSB’s potential in submillimeter-wave astronomy MKID readout systems.
The Fred Young Submillimeter Telescope (FYST), on Cerro Chajnantor in the Atacama desert of Chile, will conduct wide-field and small deep-field surveys of the sky with more than 100,000 detectors on the Prime-Cam instrument. Kinetic inductance detectors (KIDs) were chosen as the primary sensor technology for their high density focal plane packing. Additionally, they benefit from low cost, ease of fabrication, and simplified cryogenic readout, which are all beneficial for successful deployment at scale. The cryogenic multiplexing complexity is pulled out of the cryostat and is instead pushed into the digital signal processing of the room temperature electronics. Using the Xilinx Radio Frequency System on a Chip (RFSoC), a highly multiplexed KID readout was developed for the first light Prime-Cam and commissioning Mod-Cam instruments. We report on the performance of the RFSoC-based readout with multiple detector arrays in various cryogenic setups. Specifically we demonstrate detector noise limited performance of the RFSoC-based readout under the expected optical loading conditions.
Prime-Cam is a first-generation instrument designed for the Fred Young Submillimeter Telescope (FYST) in the Cerro Chajnantor Atacama Telescope (CCAT) Facility. Among the instrument modules being developed for the Prime-Cam receiver, the highest frequency 850 GHz module presents unique challenges in optical design, coupling, detection, and readout. The 850 GHz module will incorporate approximately 45,000 polarization-sensitive, lumped-element microwave kinetic inductance detectors (KIDs), which will represent the most KIDs on sky in a single instrument to date. We present the critical aspects of the detector design and discuss solutions to the challenges of efficient optical coupling and a multioctave readout band. Specifically, the designs will include a feature which reduces the inductance across a portion of the detectors by shorting pairs of inductor lines to allow the KIDs to be tuned across four distinct bands across the readout range, all with minimal impact to the responsivity of the detector. Thus, the resonators will be coarsely tuned via the inductance shorts, and finely tuned by etching away small portions of the interdigital capacitors. We further present a comparison between simulations and preliminary results of thermal responsivity. The results of this work will directly inform the design of microwave KIDs for the multi-octave readout architecture as part of the development of densely packed arrays for the Prime-Cam instrument.
KEYWORDS: Sensors, Resonators, Detector arrays, Data acquisition, Signal attenuation, Equipment, Quantum reading, Calibration, Signal processing, Signal detection
We outline the development of the readout software for the Prime-Cam and Mod-Cam instruments on the CCAT Fred Young Submillimeter Telescope (FYST), primecam readout. The instruments feature Lumped-element Kinetic Inductance Detector (LEKID) arrays driven by Xilinx ZCU111 RFSoC boards. In the current configuration, each board can drive up to 4000 KIDs, and Prime-Cam is implementing approximately 25 boards. The software runs on a centralized control computer connected to the boards via dedicated ethernet and facilitates such tasks as frequency-multiplexed tone comb driving, comb calibration and optimization, and detector timestream establishment. The control computer utilizes dynamically generated control channels for each board, allowing for simultaneous parallel control overall, while uniquely tracking diagnostics for each. This work demonstrates a scalable RFSoC readout architecture where computational demands increase linearly with the number of detectors, enabling control of tens-of-thousands of KIDs with modest hardware, and opening the door to the next generation of KID arrays housing millions of detectors.
KEYWORDS: Sensors, Resonators, Digital signal processing, Inductance, Data conversion, Multiplexing, Signal to noise ratio, Frequency combs, Signal attenuation
The Prime-Cam instrument on the Fred Young Submillimeter Telescope (FYST) is expected to be the largest deployment of millimeter and submillimeter sensitive kinetic inductance detectors to date. To read out these arrays efficiently, a microwave frequency multiplexed readout has been designed to run on the Xilinx Radio Frequency System on a Chip (RFSoC). The RFSoC has dramatically improved every category of size, weight, power, cost, and bandwidth over the previous generation readout systems. We describe a baseline firmware design which can read out four independent RF networks each with 500 MHz of bandwidth and 1000 detectors for ∼30 W. The overall readout architecture is a combination of hardware, gateware/firmware, software, and network design. The requirements of the readout are driven by the 850 GHz instrument module of the seven-module Prime-Cam instrument. These requirements along with other constraints which have led to critical design choices are highlighted. Preliminary measurements of the system phase noise and dynamic range are presented.
The Fred Young Submillimeter Telescope (FYST) at the Cerro-Chajnantor Atacama Telescope prime (CCATprime) Facility will host Prime-Cam as a powerful, first generation camera with imaging polarimeters working at several wavelengths and spectroscopic instruments aimed at intensity mapping during the Epoch of Reionization. Here we introduce the 850 GHz (350 micron) instrument module. This will be the highest frequency module in Prime-Cam and the most novel for astronomical and cosmological surveys, taking full advantage of the atmospheric transparency at the high 5600 meter CCAT-prime siting on Cerro Chajnantor. The 850 GHz module will deploy ∼40,000 Kinetic Inductance Detectors (KIDs) with Silicon platelet feedhorn coupling (both fabricated at NIST), and will provide unprecedented broadband intensity and polarization measurement capabilities. The 850 GHz module will be key to addressing pressing astrophysical questions regarding galaxy formation, Big Bang cosmology, and star formation within our own Galaxy. We present the motivation and overall design for the module, and initial laboratory characterization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.