We have developed comprehensive and simulation tools that can reliably predict performance of thermo-radiative (TR) devices. Based on simulations and characterization, we have identified that the inefficient photon extraction from Hg1−xCdxTe is the main obstacle of achieving high-performing TR devices. We have designed photonic structures to significantly improve photon extraction from Hg1−xCdxTe, which promises order-of-magnitude TR performance improvement.
Mercury telluride (HgTe) nanocrystal quantum dot-based infrared photodetectors provide a low-cost alternative to mercury cadmium telluride (MCT) bulk alloy devices made through epitaxial growth methods. The size-tunable optical properties of HgTe colloidal quantum dots (CQDs) make it possible to synthetically target a range of absorption edge wavelengths encompassing the infrared region. In this work, we report the synthesis of HgTe CQDs with high aspect ratios using solution-based colloidal techniques. The radial diameter of the arms of tripodal HgTe CQDs can be adjusted between 3 and 7 nm, with corresponding decreases in aspect ratios (arm length/radial diameter) from six to two, respectively. Tripodal HgTe CQDs exhibit room temperature photoconductivity with optical response ranging from the short wavelength infrared (SWIR) to mid-wavelength infrared (MWIR) spectral region, with optical cutoffs increasing from 1.7 to 3.5 µm with increasing CQD arm diameter. These tripodal HgTe CQDs with high aspect ratios exhibit relatively strong photoconductivity response and are promising for CQD-based infrared photodetectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.