The paper introduces an innovative object classification method for urban environments, employing distributed acoustic sensing (DAS) to address the complexities of urban landscapes. Utilizing omnipresent optical telecommunication cables, our approach involves a modified convolutional neural network (CNN) with transfer learning, achieving up to 85% accuracy. This method reuses most of the original network for feature extraction, with a final layer customized for new urban datasets – initially trained at the Brno University of Technology and then adapted to city center data. The model effectively identifies urban elements like vehicles and pedestrians, showcasing the potential of DAS for real-time classification in urban management and planning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.