A new application for ultra-fast and repeatable in-die determination of CD structures at the ~1 &mgr;m length scale using
BPR®/BPE® (Beam Profile Reflectometry/Ellipsometry) technologies on an Opti-Probe OP9000 series system, is presented and summarized. Two structures were measured and analyzed, including a poly-silicon CD standard and an advanced poly-silicon recessed structure relevant to advanced memory devices. A focused beam spot (~1 &mgr;m) and "fast BPR" data acquisition capability (~17 ms) were utilized to perform high-resolution scans across wafer and within single die regions. Rotating Compensator Spectroscopic Ellipsometry (RCSE®) signals were also used to independently determine and compare to BPR results from data collected over larger areas (~15 &mgr;m). The BPR/BPE and SE results for line CD were found to have high correlation. Further, model regression for SE data coupled with an artificial neural
network model and fast BPR were utilized to measure and calculate 10,000 points across a 1 mm2 area in a matter of
minutes. Overall, the results were found to be repeatable and correlated well to CD-SEM analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.