In general, there is a severe demand for, and shortage of, large accurately labeled datasets to train supervised machine learning (ML) algorithms for domains like smart cars and unmanned aerial systems (UAS). This impacts a number of real-world problems from standing up ML on niche domains to ML performance in/across different environments. Herein, we consider the task of efficiently, meaning requiring the least amount of human intervention possible, converting large UAS data collections over a shared geospatial area into accurately labeled training data. Herein, we take a human-in-the-loop (HITL) approach that is based on coupling active learning and self-supervised learning to efficiently label low altitude UAS imagery for the goal of training ML algorithms for underlying tasks like detection, localization, and tracking. Specifically, we propose an extension to our stream classification algorithm StreamSoNG based on human intervention. We also extend StreamSoNG to rely on a second and initially more mature, but assumed incomplete, ML classifier. Herein, we use the Unreal Engine to simulate realistic ray-traced low altitude UAS data and facilitate algorithmic performance analysis in a controlled fashion. While our results are preliminary, they suggest that this approach is a good trade off between not overloading a human operator and circumventing fundamental stream classification algorithm limitations.
The focus of this article is deep learning on small, class imbalanced data sets in support of explosive hazard detection (EHD) and automatic target recognition (ATR). To this end, we explore artificial neural networks that are driven by similarity versus classification or regression. Similarity can be emphasized via network design, e.g., siamese networks, and/or underlying metric, e.g., contrastive or triple loss. The general goal of a similarity neural network (SNN) is discriminative training via focusing on similarity between tuples of like (and unlike) inputs. As such, SNNs have the potential to learn improved solutions on small data; aka do more with less". Herein, we explore different avenues and we show that SNNs are essentially neural feature extractors followed by k-nearest neighbor classification. Instead of experimenting on a government data set that cannot be shared, we instead focus on benchmark community data sets for sake of reproducible research. Preliminary findings are encouraging as they suggest that SNNs have great potential for tasks like EHD and ATR.
The focus of this article is extending classifiers from N classes to N+1 classes without retraining for tasks like explosive hazard detection (EHD) and automatic target recognition (ATR). In recent years, deep learning has become state-of-the-art across domains. However, algorithms like convolutional neural networks (CNNs) suffer from the assumption of a closed-world model. That is, once a model is learned, a new class cannot usually be added without changes in the architecture and retraining. Herein, we put forth a way to extend a number of deep learning algorithms while keeping their features in a locked state; i.e., features are not retrained for the new N+1 class. Different feature transformations, metrics, and classifiers are explored to assess the degree to which a new sample belongs to one of the N classes and a decision rule is used for classification. Whereas this extends a deep learner, it does not tell us if a network with locked features has the potential to be extended. Therefore, we put forth a new method based on visually assessing cluster tendency to assess the degree to which a deep learner can be extended (or not). Lastly, while we are primarily focused on tasks like aerial EHD and ATR, experiments herein are for benchmark community data sets for sake of reproducible research.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.