The idea of ALMA Band-4+5 receivers are proposed for the upgrade after 2030. The new receiver will cover the RF frequency of the original Band-4 and Band-5 with continuous frequency tuning over 125 –211 GHz with dual polarizations, dual sidebands capability. The instantaneous intermediate frequency (IF) bandwidth is up to 16 GHz per sideband and per polarization. Both the SIS-based receiver and HEMT-based receiver schemes are considered. For the SIS receiver scheme, the niobium-based SIS junctions will be fabricated to form mixer chips, and integrated into the mixer blocks with broadband waveguide 3-dB quadrature hybrid couplers with LO couplers, cryogenic IF low-noise amplifiers, and 2-20 GHz coaxial 3-dB quadrature hybrid couplers to form sideband separating down-converters. The inputs of the sideband separating down-converters are fed by the ellipsoidal mirror pairs, corrugated feedhorn and the orthomode transducer. For the HEMT-based receiver scheme, using the same optics configuration as the SIS-based receiver, the cryogenic InP HEMT low-noise amplifiers (LNAs) chains cover 125 – 211 GHz operated in 15-K ambient temperature will be the key components of the cold cartridge assembly (CCA). For the warm cartridge assembly, a pair of sideband-separating diode or resistive transistor mixers will provide four-channel 16-GHz IF instantaneous bandwidth. To avoid the possible interference between LO and IF signals, considering the possible 16 GHz IF bandwidth over 4 – 20 GHz, the LO fundamental frequency will be chosen in 24 - 32 GHz, followed by an active frequency tripler to form the phase-lock loop with 72 – 96 GHz frequency tuning range. The key components with 51.2% relative bandwidth to be developed in-house are Nb SIS mixers, RF InP HEMT LNAs, 3-dB waveguide hybrid couplers, orthomode transducers, corrugated horn antenna, and optics mirror pairs.
The Mid-Infrared E-ELT Imager and Spectrometer (METIS) for the Extremely Large Telescope in Chile, is expecting to begin the system-level Assembly, Integration, and Testing (AIT) at Leiden University in 2025. One of the key success factors for the AIT is the preparation of specialized Support Equipments (SEQs). This paper presents the SEQ units developed by ASIAA, including the AIT support frame (ASF), ASF transportation container, clean area system, and AIT lifting platform. The key requirements, functionality, and considerations for SEQ design are provided.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.