In the field of computer vision, template matching technology is an important research direction. This technique compares the template image with the sample image to find out the position of the template image in the sample image. It has the characteristics of simple algorithm, small amount of calculation and high recognition rate, so it is usually used in other computer vision fields such as object detection and target tracking. In addition, with the popularity of infrared sensors, and infrared images can obtain additional information that is not included in visible light images, the integrated processing of visible light and infrared information has always been a research hotspot. The traditional template matching algorithm mainly focuses on the matching between visible light images. For the information difference between visible light and infrared images, the traditional template matching algorithms are difficult to achieve accurate matching between the two types of images, and the amount of calculation is large. In response to this problem, a template matching algorithm based on feature extraction of convolutional neural networks is proposed in this paper. Our method draws on the robust template matching using scale-adaptive deep convolutional features. We use a scaleadaptive method to extract the deep features of visible light and infrared images, and then uses the traditional NCC matching algorithm to obtain the matching position of the template on the feature map. Then the regression and optimization of the template position are performed to obtain the position of the template image on the sample image. The research results show that our method can achieve the matching of the infrared template on the visible light image, and the position error is not large.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.