Zero-index metamaterials show the unique feature of uniform spatial phase distributions, enabling the interaction of single electromagnetic mode with matter over an infinite area in an arbitrary shape. This feature brings various novel optical physics and devices, such as supercoupler, large-area single-mode laser, and extended superradiance. However, the state-of-the-art zero-index waveguide shows a propagation loss as high as 1000 dB/mm, hampering most potential applications of zero-index metamaterials. Although zero-index metamaterials based on bound state in the continuum can show a lower propagation loss of 45 dB/mm, the photonic crystal slab configuration which are boundless in the in-plane direction limits the devices’ footprint and flexibility drastically. Here we demonstrated a one-dimensional metawaveguide with zero refractive index along the propagation direction, featuring a high flexibility, a compact footprint, and a low propagation loss of 5.45 dB/mm near the zero-index wavelength. This metawaveguide could enable many zero index-based linear, nonlinear, and quantum photonic devices such as entangled photon pair sources based on spontaneous four-wave mixing.
On-chip generation, manipulation and detection quantum states of light with integrated photonic circuits opens the way to realizing complex quantum technologies for applications in the fields of computing, simulation and communication. In this talk we present recent progress in how to generate and control quantum entanglement with silicon quantum photonic devices for quantum information processing.
Entanglement is one of the most vital properties of quantum mechanical systems, and it forms the backbone of quantum information technologies. Taking advantage of nano/microfabrication and particularly complementary metal-oxide-semiconductor manufacturing technologies, photonic integrated circuits (PICs) have emerged as a versatile platform for the generation, manipulation, and measurement of entangled photonic states. We summarize the recent progress of quantum entanglement on PICs, starting from the generation of nonentangled and entangled biphoton states, to the generation of entangled states of multiple photons, multiple dimensions, and multiple degrees of freedom, as well as their applications for quantum information processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.