In the automotive industry, the need for affordable lightweight structures rises as new fuel consumption regulations tighten and customers demand for performance increases. One way of achieving a cost-effective and weight-optimal design is by means of structural optimization. In 1991, A. Baumgartner, S. Burkhardt and C. Mattheck published their first paper on topology optimization based on bionic principles. Nature is inevitably dependent on the most efficient use of the body's mass. Using a fully-stressed-method, the original SKO-method is able to optimize engineering components with regard to maximum strength and stiffness. For several years now, the SKO-method has been successfully applied and enhanced for complex structural optimization at the Research & Technology Division of DaimlerChrysler AG. The subject presented in this paper was investigated in cooperation with the Institut fur Verbundwerkstoffe GmbH at the Technical University of Kaiserslautern. The aim is to present the new developments concerning the SKO-method. Starting with a short introduction to the original SKO-method, the newly implemented FreedOpt (Frequency and Damping Optimization) module is explained afterwards. FreedOpt can tune natural frequencies to a desired level. In cases were the tuning of frequencies is not sufficient, damping is needed. The new module is able to optimize the utilization of damping material with a new approach based on maximizing the dissipated vibration energy. The main focus of the paper is on the verification of the simulation results with physical tests. Finally, the new tool is applied to automotive parts. Concluding, the authors give an outlook for future work.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.