Assessing smile genuineness from video sequences is a vital topic concerned with recognizing facial expression and linking them with the underlying emotional states. There have been a number of techniques proposed underpinned with handcrafted features, as well as those that rely on deep learning to elaborate the useful features. As both of these approaches have certain benefits and limitations, in this work we propose to combine the features learned by a long short-term memory network with the features handcrafted to capture the dynamics of facial action units. The results of our experiments indicate that the proposed solution is more effective than the baseline techniques and it allows for assessing the smile genuineness from video sequences in real-time.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.