SPEXone is a compact multi-angle spectropolarimeter that measures both spectral intensity and the state of linear polarization of light scattered by aerosols in the Earth’s atmosphere at five different viewing angles simultaneously. This enables a very accurate quantification and characterization of atmospheric aerosols, helping us to better understand their effects on global climate and air quality. Building upon the success of its predecessor SPEXone, which has been launched in 2024 as part of the NASA PACE observatory, a second and improved instrument, SPEXone Second Generation, has been built within the ESA PRODEX program. Most recently, the integrated instrument underwent full on-ground characterization and calibration in ambient conditions at SRON. This contribution gives an overview of the measurements and presents preliminary results from the characterization and calibration campaign, focusing on the instrument performance. A few key performance aspects such as straylight, spatial and spectral resolution are discussed, with data from SPEXone for PACE serving as a comparison. The result of the analysis shows excellent image quality and indicates an improvement in the amount of diffuse straylight.
We have developed a 6 dm3-sized optical instrument to characterize the microphysical properties of fine particulate matter or aerosol in the Earth atmosphere from low Earth orbit. Our instrument can provide detailed and worldwide knowledge of aerosol amount, type and properties. This is important for climate and ecosystem science and human health [1, 2]. Therefore, NASA, ESA and the European Commission study the application of aerosol instruments for planned or future missions. We distinguish molecular Rayleigh scattering from aerosol Mie-type scattering by analyzing multi-angle observations of radiance and the polarization state of sun light that is scattered in the Earth atmosphere [3]. We measure across the visible wavelength spectrum and in five distinct viewing angles between -50° and +50°. Such analysis has been traditionally done by rotating polarizers and band-filters in front of an Earth observing wide-angle imager. In contrast, we adopt a means to map the linear polarization state on the spectrum using passive optical components [4]. Thereby we can characterize the full linear polarization state for a scene instantaneously. This improves the polarimetric accuracy, which is critical for aerosol characterization, enabling us to distinguish for example anthropogenic from natural aerosol types. Moreover, the absence of moving parts simplifies the instrument, and makes it more robust and reliable. We have demonstrated this method in an airborne instrument called SPEX airborne [5, 6] in the recent ACEPOL campaign together with a suite of state-of-the art and innovative active and passive aerosol sensors on the NASA ER-2 high-altitude research platform [7]. An earlier report on the SPEX development roadmap was given in [8]. In this contribution we introduce SPEXone, a compact space instrument that has a new telescope that projects the five viewing angles onto a single polarization modulation unit and the subsequent reflective spectrometer. The novel telescope allows the observation of five scenes with one spectrometer, hence the name. We describe the optical layout of the telescope, polarization modulation optics, and spectrometer and discuss the manufacturability and tolerances involved. We will also discuss the modelled instrument performance and show preliminary results from optical breadboards of the telescope and polarization modulation optics. With SPEXone we present a strong and new tool for climate research and air quality monitoring. It can be used to study the effect of atmospheric aerosol on the heating/cooling of the Earth and on air quality. Also, SPEXone can improve the accuracy of satellite measurements of greenhouse gas concentrations and ocean color that rely on molecular absorption of reflected sunlight by providing detailed knowledge of the aerosol properties, required to accurately trace the light path in presence of scattering.
SPEXone is developed in a partnership between SRON Netherlands Institute for Space Research and Airbus Defence and Space Netherlands with support from the Netherlands Organisation for Applied Scientific Research (TNO) as a Dutch contribution to the NASA PACE observatory launching in 2022.
KEYWORDS: Sensors, Short wave infrared radiation, Spectroscopy, Space telescopes, Telescopes, Astronomical imaging, Calibration, Electronics, Near infrared, Space operations
The Tropospheric Monitoring Instrument TROPOMI is ready for system level verification. All sub-units have been integrated and tested and final integration at Dutch Space in Leiden has been completed. The instrument will be subjected to a testing and calibration program and is expected to be ready for delivery to the spacecraft early 2015. Using TROPOMI measurements, scientists will be able to improve and continue the study of the Earth’s atmosphere and to monitor air quality, on both global and local scale.
The TROPospheric Monitoring Instrument (TROPOMI) is a sun-backscatter imaging spectrometer. It is the single instrument on board ESA’s Copernicus Sentinel-5P satellite, which is now planned for launched in early 2017.
TROPOMI is the single instrument on ESA’s Sentinel 5 precursor satellite to be launched in October 2016. TROPOMI will measure the atmospheric constituents absorbing in the UV-SWIR wavelength range, being O3, NO2, SO2, CH4, CO, CH2O, and aerosol properties. TROPOMI is a sun back-scatter instrument in the line of SCIAMACHY and OMI with 4 spectrometer bands and a spectral resolution of 0.25 – 0.5 nm. Following the earlier sensors, firstly the spatial resolution is improved by a factor 6 (OMI) to 7 x 7 km2 and at the same time the sensitivity by an order of magnitude.
The paper discusses the instrument performances as acquired from on-ground performance / calibration measurements. For the calibration an extremely condensed measurement campaign of 4 months 24/7 measurements was performed with virtually no slack and still gathering all of the data necessary from on-ground measurements. Given the fact that the trace gas signals and their variation in the measured spectra can be quite small, calibration is crucial to get accurate results and this illustrates that TROPOMI is a highly success driven and efficient programme.
TROPOMI / Sentinel-5p bridges the data streams from on one hand OMI and SCIAMACHY and on the other hand the future Sentinel-5. It is the first of a series of satellites from the Copernicus programme devoted to air quality and will soon be ready for use.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.