In this paper, we present our study on track classification by taking into account environmental information and target estimated states. The tracker uses several motion model adapted to different target dynamics (pedestrian, ground vehicle and SUAV, i.e. small unmanned aerial vehicle) and works in centralized architecture. The main idea is to explore both: classification given by heterogeneous sensors and classification obtained with our fusion module. The fusion module, presented in his paper, provides a class on each track according to track location, velocity and associated uncertainty. To model the likelihood on each class, a fuzzy approach is used considering constraints on target capability to move in the environment. Then the evidential reasoning approach based on Dempster-Shafer Theory (DST) is used to perform a time integration of this classifier output. The fusion rules are tested and compared on real data obtained with our wireless sensor network.In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of this system is evaluated in a real exercise for intelligence operation (“hunter hunt” scenario).
KEYWORDS: Sensor networks, Detection and tracking algorithms, Roads, Data fusion, Motion models, Magnetic tracking, Sensors, Fuzzy logic, Kinematics, Magnetic sensors
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
KEYWORDS: Sensors, LIDAR, Monte Carlo methods, Neodymium, Environmental sensing, Navigation systems, Robotics, Acoustics, Systems modeling, Information security
In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster’s rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster’s rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.
KEYWORDS: Sensors, Roads, Detection and tracking algorithms, Sensor networks, Motion models, Surveillance, Data fusion, Magnetic tracking, Target detection, Magnetic sensors
In this paper, we address the problem of multiple ground target tracking and classification with data from an unattended wireless sensor network. A multiple target tracking algorithm, taking into account the road and vegetation information, is studied in a centralized architecture. Despite of efficient algorithms proposed in the literature, we must adapt a basic approach to satisfy embedded processing. The algorithm enables tracking human and vehicles driving both on and off road. Based on our previous works, we integrate road or trail width and vegetation cover, in motion model to improve performance of tracking under constraint. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets including a stop motion model. In order to handle realistic ground target tracking scenarios, the tracking algorithm is integrated into an operational platform (named fusion node) which is an autonomous smart computer abandoned in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for Forward Operating Base (FOB) protection and road surveillance.
In this paper, data obtained from wireless unattended ground sensor network are used for tracking multiple ground targets (vehicles, pedestrians and animals) moving on and off the road network. The goal of the study is to evaluate several data fusion algorithms to select the best approach to establish the tactical situational awareness. The ground sensor network is composed of heterogeneous sensors (optronic, radar, seismic, acoustic, magnetic sensors) and data fusion nodes. The fusion nodes are small hardware platforms placed on the surveillance area that communicate together. In order to satisfy operational needs and the limited communication bandwidth between the nodes, we study several data fusion algorithms to track and classify targets in real time. A multiple targets tracking (MTT) algorithm is integrated in each data fusion node taking into account embedded constraint. The choice of the MTT algorithm is motivated by the limit of the chosen technology. In the fusion nodes, the distributed MTT algorithm exploits the road network information in order to constrain the multiple dynamic models. Then, a variable structure interacting multiple model (VS-IMM) is adapted with the road network topology. This algorithm is well-known in centralized architecture, but it implies a modification of other data fusion algorithms to preserve the performances of the tracking under constraints. Based on such VS-IMM MTT algorithm, we adapt classical data fusion techniques to make it working in three architectures: centralized, distributed and hierarchical. The sensors measurements are considered asynchronous, but the fusion steps are synchronized on all sensors. Performances of data fusion algorithms are evaluated using simulated data and also validated on real data. The scenarios under analysis contain multiple targets with close and crossing trajectories involving data association uncertainties.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.