Here we directly emulate a two-dimensional Dirac equation with a position-dependent mass term in a photonic crystal and present a new type of photonic resonators with light confinement originating in relativistic Dirac physics. Some of the modes of such resonators represent eigenmodes of a supersymmetric Hamiltonian. To test our concept, we designed, fabricated, and studied a resonator operating in the mid-IR region. Direct imaging of the structure in both real and Fourier spaces confirmed existence of the modes. The demonstrated approach offers a new route for designing photonic devices and probing supersymmetric quantum physics by using a classical photonic platform.
In this work we propose a method to achieve improved topological edge sates by engineering an optimal profile of the transition at the boundary between topological and trivial domains. From experiment and simulation results we confirmed that the quality factor of edge state for smooth transition profile can be increased by more than an order compared to the edge state of a conventional step profile. At the same time the modes retained their topological resilience, which, when combined with the reduced radiative leakage, enables robust photonic transport over long distances even above the light line.
The WS2 monolayer encapsulated in two thin hBN layers was pumped at room temperature by a circularly polarized laser in order to excite one of the valleys (K or K’ valley). The refractivity spectra measured using both left- and right- CP probe with low intensity, revealed the nonreciprocal response at exciton resonance wavelength. Based on this effect, we propose a novel design of an isolator containing SiN ring resonator integrating an asymmetrically places WS2 monolayer. By applying the coupled mode theory and parameter extracted from the experiment, the isolation of the device was estimated to be ~20dB.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.