Significant technical and optical advancements are required for intraoperative optical coherence tomography (OCT) to perform boundless surgical applications in otology, since the translation of OCT for surgical-microscope facilitates the simultaneous OCT and microscopic visualization of soft tissue structures of the surgical region with a high-resolution in real-time. Herein, we developed an augmented-reality intrasurgical OCT microscope system with an extended 280 mm working distance, which simply provides a sufficient space for the manipulation during surgeries compared to conventional techniques. Ex vivo experiments were initially performed to evaluate the enhanced system performances and secondly, the developed system was well-utilized to clinically assess the preliminary findings of tympanomastoidectomy in six patients with chronic otitis media. The OCT system evaluated the residual inflammation of region of interest in the mastoid bone and most importantly OCT was sufficiently useful for visualizing the connection between the graft and remnant tympanic membrane intraoperatively. Use of this extended-working distance OCT integrated surgical-microscope enables the surgeons to precisely define the aforementioned surgical requirements, while performing intraoperative imaging over the complete range.
The aim of this study was to analyze the effectiveness of decalcification using ethylenediaminetetraacetic acid (EDTA) as an optical clearing method to enhance the depth visibility of internal soft tissues of cochlea. Ex vivo mouse and guinea pig cochlea samples were soaked in EDTA solutions for decalcification, and swept source optical coherence tomography (OCT) was used as imaging modality to monitor the decalcified samples consecutively. The monitored noninvasive cross-sectional images showed that the mouse and guinea pig cochlea samples had to be decalcified for subsequent 7 and 14 days, respectively, to obtain the optimal optical clearing results. Using this method, difficulties in imaging of internal cochlea microstructures of mice could be evaded. The obtained results verified that the depth visibility of the decalcified ex vivo samples was enhanced.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.