Terrestrial exoplanets shine in light reflected from a parent star. Optical spectra are required to provide evidence of a life-supporting environment. Exoplanets are very faint and their optical spectra are contaminated by the spectrum of the parent star. High angular resolution provided by large apertures is needed to distinguish between the spectrum of the exoplanet and its star. Today, large aperture telescopes use segmented primary mirrors that employ close-packed hexagonal segments. The telescope primary mirror is periodically discontinuous with straight lines. These discontinuities scatter unwanted radiation from the much brighter parent star across the field of view to obscure the light from the very faint terrestrial exoplanet. These discontinuities, which mimic a diffraction grating, result in a non-uniform distribution of background light across the image plane. This non-uniformity masks or hides exoplanets from view, to reduce the number of exoplanets that can be observed with a large aperture telescope or to reduce the quality of spectra and thus lead to misinterpretation of data. Here we introduce the concept of the pinwheel pupil whose unique diffraction pattern significantly reduces the non-uniform distribution of background radiation. Diffraction patterns from pinwheel pupils are compared to the monolithic filled aperture, the classical Cassegrain, the 60-degree symmetry of the hexagonal segments (JWST, E-ELT, etc.). Diffraction “spikes” are reduced by at least 105. We discuss the “pinwheel pupil” advantages to spectroscopy, image processing, and observatory operations. We show that, segment fabrication of curved-sided mirrors is not more difficult than fabrication of hexagonal mirror segments. . This is the report of quantitative study of Fraunhofer (far field) diffraction patterns produced by three different topologies or architectures of mirror segmentation, when illuminated by a plane wave of monochromatic white-light. A plot, in angular units of the intensity as a function of azimuth, Phif , within annular rings at different FOVs, centered on the system axis of the diffraction pattern will be presented. The advantages of the segmented pinwheel pupil is discussed.
Diffraction effects of large segmented mirror gaps and secondary mirror support struts produce diffraction peaks or flares that are a detriment to exoplanet detection. In this paper we present detailed parametric diffraction analyses of an innovative “Pinwheel Pupil” segmented mirror concept utilizing curved segment gaps and secondary support struts that can potentially eliminate these diffraction flares that can obscure a faint exoplanet image. The resulting numerical diffraction performance predictions are quantitatively compared to that of both ideal monolithic circular pupils and classical annular pupils with straight secondary mirror struts. We utilize performance – based merit functions consisting of both radial and azimuthal profiles of the resulting telescope point spread function.
Mapping and quantifying lunar water ice addresses one of NASA’s Strategic Knowledge Gaps to understand the lunar resource potential for future human exploration of the Moon. Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently-shadowed and occasionally-sunlit regions in the vicinity of the lunar South Pole. Lunar Flashlight will acquire these measurements from lunar orbit using a multi-band laser reflectometer composed of an optical receiver aligned with four lasers emitting different wavelengths in the shortwave infrared spectral region between 1 μm and 2 μm. The receiver measures the laser radiance reflected from the lunar surface in each spectral band and continuum/absorption reflectance band ratios are then analyzed to quantify water ice concentration in the illuminated spot. The receiver utilizes a 70×70-mm, aluminum, off-axis paraboloidal mirror with a focal length of 70 mm, which collects the incoming light onto a single, 2 mm diameter InGaAs detector with a cutoff wavelength of 2.4 μm. We present the optical and mechanical designs of the receiver, including its optimization for rejection of solar stray-light from outside its intended field of view. This highly mass- and volume-constrained instrument payload will demonstrate several firsts, including being one of the first instruments onboard a CubeSat performing science measurements beyond low Earth orbit and the first planetary mission to use multi-band active reflectometry from orbit.
Lunar Flashlight is an innovative NASA CubeSat mission dedicated to mapping water ice in the permanently shadowed regions of the Moon, which may act as cold traps for volatiles. To this end, a multi-band reflectometer will be sent to orbit the Moon. This instrument consists of an optical receiver aligned with four lasers, each of which emits sequentially at a different wavelength in the near-infrared between 1 μm and 2 μm. The receiver measures the laser light reflected from the lunar surface; continuum/absorption band ratios are then analyzed to quantify water ice in the illuminated spot. Here, we present the current state of the optical receiver design. To optimize the optical signal-to-noise ratio, we have designed the receiver so as to maximize the laser signal collected, while minimizing the stray light reaching the detector from solarilluminated areas of the lunar surface outside the field-of-view, taking into account the complex lunar topography. Characterization plans are also discussed. This highly mass- and volume-constrained mission will demonstrate several firsts, including being one of the first CubeSats performing science measurements beyond low Earth orbit.
The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a ±67° along-track range. The instrument flies aboard NASA’s high-altitude ER-2 aircraft, and acquires Earth imagery with ~10 m spatial resolution across an 11- km wide swath. Radiance data are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers also enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. During January-February 2013, AirMSPI data were acquired over California as part of NASA’s Polarimeter Definition Experiment (PODEX), a field campaign designed to refine requirements for the future Aerosol-Cloud-Ecosystem (ACE) satellite mission. Observations of aerosols, low- and mid-level cloud fields, cirrus, aircraft contrails, and clear skies were obtained over the San Joaquin Valley and the Pacific Ocean during PODEX. Example radiance and polarization images are presented to illustrate some of the instrument’s capabilities.
A three-by-three polarization ray tracing matrix method for polarization ray tracing in optical systems is presented
for calculating the polarization transformations associated with ray paths through optical systems. The method is a
three dimensional generalization of a Jones matrix. Diattenuation of the optical system is calculated via singular
value decomposition.
This past spring a new for-credit course on illumination engineering was offered at the College of Optical Sciences at
The University of Arizona. This course was project based such that the students could take a concept to conclusion. The
main goal of the course was to learn how to use optical design and analysis software while applying principles of optics
to the design of their optical systems. Projects included source modeling, displays, daylighting, light pollution, faceted
reflectors, and stray light analysis. In conjunction with the course was a weekly lecture that provided information about
various aspects of the field of illumination, including units, étendue, optimization, solid-state lighting, tolerancing, litappearance
modeling, and fabrication of optics. These lectures harped on the important points of conservation of
étendue, source modeling and tolerancing, and that no optic can be made perfectly. Based on student reviews, future
versions of this course will include more hands-on demos of illumination components and assignments.
The properties of a 3 × 3 polarization ray tracing matrix formalism are presented and the role of this method in
optical design. Properties of diattenuator matrices are derived and methods for analyzing diattenuation of arbitrary
homogeneous and inhomogeneous matrices are presented. The 3 × 3 matrix formalism is used to analyze
polarization properties of an example corner cube.
The on-axis wavefront aberrations of a one-dimensional sub-wavelength grating anti-reflection coating on a f/1.7 lens surface is dominated by defocus, astigmatism, and piston. The astigmatism is 0.02 waves and the magnitude of the piston approaches 1 wave peak-to-valley. The difference in aberrations between orthogonally polarized wavefronts, or the retardance aberration, shows 0.01 waves of astigmatism like variation and more than 0.01 waves of retardance induced defocus like variation.
Polarization modulation in photo-elastic modulators (PEM) driven on and off resonance has been investigated for a commercially available PEM using a high speed infrared (lambda=1550 nm) polarimeter. Off-resonance operation was explored in the hope of finding a slower operating mode than the primary resonance. The primary resonance, used for normal PEM operation, was 5 Hz wide with a Q of 8500. The phase transfer function was well behaved and typical of electrical resonances. Device startup and shutdown had smooth amplitude changes occurring over 1/3rd of a second. The photo-elastic modulator was examined at drive frequencies significantly below the resonant frequency. Driving the PEM with several odd sub-harmonics generated resonance at the fundamental frequency. Three other lower frequency resonances were discovered, but all at an oscillation amplitude more than 12 db below the amplitude of the fundamental resonance. Thus a practical configuration to allow slower operation of the PEM was not found.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.