The primary purpose of the kidney, specifically the glomerulus, is filtration. Filtration is accomplished through the glomerular filtration barrier, which consists of the fenestrated endothelium, glomerular basement membrane, and specialized epithelial cells called podocytes. In pathologic states, such as Diabetes Mellitus (DM) and diabetic kidney disease (DKD), variable glomerular conditions result in podocyte injury and depletion, followed by progressive glomerular injury and DKD progression. In this work we quantified glomerulus and podocyte structural changes in histopathology image data derived from a murine model of DM. Using a variety of image processing techniques, we studied changes in podocyte morphology and intra-glomerular distribution across healthy, mild DM, and DM glomeruli. Our feature analysis provided feature trends which we believe are reflective of DKD pathology; while glomerular area peaked in mild DM, average podocyte number and distance from the urinary pole continued to increase throughout DM. Ultimately, this study aims to augment the set of quantifiable image biomarkers used for evaluation of DKD progression in digital pathology, as well as underscore the importance of engineering biologically inspired image features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.