There is a growing need for non-invasive structural health monitoring in extreme environments. For nuclear power plants, pressure and temperature sensing under hazardous environment plays an important role for coolant system safety and stability management. Current sensing methods are intrusive, and suffer from degradation in the plant environment, limited life cycle, and complicated repair and replacement procedures. In this paper, we present an advanced Bi-In-Sn liquid metal (LM) transducer with the addition of candle-soot nanoparticles (CSNP) for improved photoacoustic efficiency and a metallic stencil for control of the liquid metal layer thickness. The sensitivity of the liquid metal candle-soot nanoparticle (LM-CSNP) ultrasound transmitter was characterized under 2 mJ/cm2 at 65 °C, and 6 mJ/cm2 at 100 °C —300 °C. Compared with existing LM transmitter, the newly presented transmitter showed a sensitivity 6.6 times stronger than previously reported LM only transmitter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.