To better understand bronchoconstriction in asthma, it is critical to dynamically visualize airway behavior in vivo. However, currently available imaging techniques do not have sufficient temporal and spatial resolution to investigate airway dynamics. We propose to use endobronchial Optical Coherence Tomography (OCT) to provide real-time cross-sectional images of airway dynamics with a high spatial resolution. Our aim was to study the structure and function of spatially distinct airways during tidal breathing (TB), breath-holds (BH) at end inspiration, and in a response to single deep inspiration (DI) and multiple DI (MDI) in a preclinical sheep asthma model.
Anesthetized and mechanically ventilated sheep (n=3) were imaged with OCT in 4 dependent and 4 non-dependent airways at baseline and in methacholine constricted airways. We assessed airway morphology during TB, BH, DI and MDI maneuvers.
The change in airway lumen area was found to be greater in the dependent airways compared to the non-dependent airways during TB (dependent: +14.9%, non-dependent: +6%) at baseline. Similarly, the dependent airways dilated more than the non-dependent airways in response to BH (dependent: +7.9%, non-dependent: +5.7%) in relaxed condition. Conversely, in the constricted lung, the DI and MDI maneuvers dilated the non-dependent airways (+13.6% DI, +44% MDI) more than the dependent airways (+6% DI, +15.5% MDI). Overall, dependent airways were more distensible than non-dependent airways during TB and BH, while this behavior was reversed following DI and MDI maneuvers in constricted airways possibly due to a greater local methacholine delivery due to gravitational dependencies on perfusion.
Asthma is a chronic disease resulting in periodic attacks of coughing and wheezing due to temporarily constricted and clogged airways. The pathophysiology of asthma and the process of airway narrowing are not completely understood. Appropriate in vivo imaging modality with sufficient spatial and temporal resolution to dynamically assess the behavior of airways is missing. Optical coherence tomography (OCT) enables real-time evaluation of the airways during dynamic and static breathing maneuvers. Our aim was to visualize the structure and function of airways in healthy and Methacholine (MCh) challenged lung.
Sheep (n=3) were anesthetized, mechanically ventilated and imaged with OCT in 4 dependent and 4 independent airways both pre- and post-MCh administration. The OCT system employed a 2.4 Fr (0.8 mm diameter) catheter and acquired circumferential cross-sectional images in excess of 100 frames per second during dynamic tidal breathing, 20 second static breath-holds at end-inspiration and expiration pressure, and in a response to a single deep inhalation.
Markedly different airway behavior was found in dependent versus non-dependent airway segments before and after MCh injection. OCT is a non-ionizing light-based imaging modality, which may provide valuable insight into the complex dynamic behavior of airway structure and function in the normal and asthmatic lung.
Lung cancer is the leading cause of cancer related death. Macroscopic imaging techniques such as computed tomography are highly sensitivity at detecting small, ≤ 2cm, peripheral pulmonary lesions (PPLs) in the lung but lack the specificity necessary for diagnosis. Bronchoscopy is a procedure routinely performed to diagnose PPLs but is hindered with a low diagnostic yield due to challenging lesion localization. We have developed a flexible transbronchial optical frequency domain imaging (TB-OFDI) catheter that functions as a ‘smart needle’ to confirm the needle placement within the target lesion prior to biopsy. The TB-OFDI smart needle consists of a flexible and removable OFDI catheter that operates within a 21-gauge transbronchial needle aspiration (TBNA) needle. The OFDI catheter can be easily removed from the needle to facilitate subsequent aspiration or biopsy acquisition. The OFDI imaging core consists of an angled-polished ball lens with a spot size of 25 μm at a working distance of 160 μm from the catheter sheath. The ball-lens was designed to have an ellipsoid shape in order to compensate for the astigmatism caused by encasing the optics within a protective sheath. Transbronchial imaging of inflated excised swine lung parenchyma with the TB-OFDI smart needle yielded clear images of alveoli. In-vivo transbronchial imaging was also performed on three swine with artificial lesions injected transthoracially. Our results suggest that the TB-OFDI smart needle may be a useful tool for guiding biopsy acquisition to increase the diagnostic yield of PPLs.
Smoke inhalation injury is a serious threat to victims of fires and explosions, however accurate diagnosis of
patients remains problematic. Current evaluation techniques are highly subjective, often involving the integration
of clinical findings with bronchoscopic assessment. It is apparent that new quantitative methods for evaluating
the airways of patients at risk of inhalation injury are needed. Optical frequency domain imaging (OFDI) is a
high resolution optical imaging modality that enables volumetric microscopy of the trachea and upper airways in
vivo. We anticipate that OFDI may be a useful tool in accurately assessing the airways of patients at risk of smoke
inhalation injury by detecting injury prior to the onset of symptoms, and therefore guiding patient management.
To demonstrate the potential of OFDI for evaluating smoke inhalation injury, we conducted a preclinical study
in which we imaged the trachea/upper airways of 4 sheep prior to, and up to 60 minutes post exposure to
cooled cotton smoke. OFDI enabled the visualization of increased mucus accumulation, mucosal thickening,
epithelial disruption and sloughing, and increased submucosal signal intensity attributed to polymorphonuclear
infiltrates. These results were consistent with histopathology findings. Bronchoscopic inspection of the upper
airways appeared relatively normal with only mild accumulation of mucus visible within the airway lumen. The
ability of OFDI to not only accurately detect smoke inhalation injury, but to quantitatively assess and monitor
the progression or healing of the injury over time may provide new insights into the management of patients
such as guiding clinical decisions regarding the need for intubation and ventilator support.
This work investigates the use of optical coherence tomography (OCT) to identify virus infection in orchid plants. Besides revealing the cross-sectional structure of orchid leaves, highly scattering upper leaf epidermides are detected with OCT for virus-infected plants. This distinct feature is not observable under histological examination of the leaf samples. Furthermore, the leaf epidermides of stressed but healthy plants, which exhibit similar visual symptoms as virus-infected plants, are not highly scattering and are similar to those of healthy plants. The results suggest that virus-infected orchid plants can be accurately identified by imaging the epidermal layers of their leaves with OCT. The OCT modality is suitable for fast, nondestructive diagnosis of orchid virus infection, which may potentially lead to significant cost savings and better control of the spread of viruses in the orchid industry.
Estimation of the tissue optical characteristics using optical coherence tomography (OCT) requires good modeling.
Present modeling of the system includes effects such as scattering of light in tissues. However, absorption effects were
often neglected in the model. They may be significant depending on the tissue type and the wavelength of the light
source. We present a study where the effects of absorption in light propagation in biological tissue were examined in the
theoretical modeling of OCT based on the single-scattering model. OCT M-scans were performed on liquid tissue
phantoms at 1% concentration. In order to mimic the effects of absorption, India ink was added to the solution. Different
concentrations of Indian ink were used to vary the absorption coefficient in the tissue phantoms. Estimation of the
absorption, scattering coefficients from the OCT signal were obtained. Substantial reduction in the slope of the
logarithmic OCT signal was observed when India ink was introduced to the liquid tissue phantoms. The results suggest
that the effects of the absorption clearly affected the estimation of the overall extinction coefficient. In order to improve
the accuracy of estimation of these characteristics, absorption effects should be taken into account.
An erbium-doped fiber amplifier (EDFA) gain flattening technique using an embedded long period grating (ELPG) is proposed. By bending the ELPG, because the different bending curvature yields the different coupling strength, it is used for the dynamic gain flattening despite the different pump power on the EDFA. The flattened gain region of 35nm can be achieved with 1dB ripple.
A long-period grating (LPG) coated with gelatin was developed as a high relative humidity (RH) sensor. The resonance dip or coupling intensity of the LPG spectrum varies with humidity while the resonance wavelength remains constant. The principle of operation of the sensor is based on the effect of an external medium, with higher refractive index than that of silica or cladding, on the LPG spectrum. Experimental investigations on the sensor yield a sensitivity of 1.2dB/%RH with an accuracy of ±0.25%RH, and a resolution of ±0.00833%RH. The LPG RH sensor also offers repeatability, hysteresis and stability errors of less than ±0.877%RH, ±0.203%RH and ±0.04%RH respectively. In addition to the characterization of the LPG RH sensor, further studies were conducted to determine the effect of grating periodicities on the sensitivity. Results show that higher-order cladding modes from smaller grating periods enable the sensor to achieve higher sensitivity to humidity. This method is proposed to be more cost effective as compared to more complex spectroscopic methods based on wavelength detection. This sensor can also help to solve problems in measuring high humidity with existing relative humidity measurement systems.
A low cost, low complexity fiber optic humidity sensor is very desirable because of the various advantages fiber optic sensors have over conventional electrical sensors. In this paper a simple, low cost plastic optical fiber (POF) sensor based on cobalt chloride (CoCl2) and gelatin coating on the curved sensing point with a humidity sensing range from 60% to 95%RH is presented. An investigation into the effect of bending radii of the fiber at the sensing point as well as fiber core diameter on sensitivity of the humidity sensor is conducted to find the best way to improve sensing performance. The sensing mechanism of the POF humidity sensor is the attenuation of the evanescent wave at the bent portion of the fiber by absorption due to CoCl2. The sensor has a sensing range from 60%RH to 95%RH. The hysteresis error is negligible and a resolution of 0.01%RH is achieved. The repeatability error can be as low as 1.1% for the whole sensing range. Investigation of the effect of fiber diameter shows that the sensitivity of the sensor improves with larger fiber diameters. The sensitivity of the sensor increases when the sensing portion of the fiber is bent to a small radius.
High resolution tunable optical filters are important in dense wavelength division multiplexing (DWDM) applications as channel spacing in optical communications systems can be as low as 0.4nm. The bandwidth of the filter must be narrow, to prevent filtering neighbouring channels. In this paper, a simple, low cost technique for the tuning of the Bragg wavelength of the FBG filter with high resolution and good repeatability is demonstrated. A FBG was embedded in a triangular carbon fiber composite package and aluminium plates were used to clamp the wider end of the package, leaving the thinner end free, like a cantilever beam. A micrometer was placed under the thinner end of the package and the vertical displacement of the micrometer will bend the carbon composite. This bending will produce compression and tension forces on the FBG depending on which side of the package is used, which will result in a shift of the Bragg wavelength. The total tuning range of the FBG filter is 2nm with a resolution of 1pm. The repeatability error was found to be 0.4% over the whole tuning range. The 3dB bandwidth of the reflected spectra from the FBG is 0.235nm, much less than channel spacing of 0.4nm.
The use of LPG embedded in carbon-fiber composite laminates (ELPG), in a 4-3 configuration, for bending measurement has been demonstrated. With increased bending curvatures on the 4 layers side, the coupling strength of the cladding mode decreases while the resonance wavelength remains relatively constant. A reduction in coupling strength leads to a reduction of the resonance amplitude depth. From the bending test covering the range of curvatures from 0m-1 to 2m-1, the ELPG yields a sensitivity of 5.065dB/m-1 and a repeatability of 98.1%. In another investigation, the ELPG ability to determine direction of bend has also been demonstrated by applying bending at the 3 layers side of the laminate. Despite having a short curvature range between 0m-1 and ~0.626m-1, the test demonstrates an increase of the cladding mode coupling strength with an increase in bending curvature, thus showing the ELPG ability to differentiate bending directions. By exploiting the unique characteristics of ELPG, two ELPGs can be exploited for 2-axis measurement of structures. Hence the overall cost and complexity of the bending sensor system can be greatly reduced.
For an embedded LPG bending sensor, in which the its resonance coupling strength changes with bending curvature, cross-talk issues between temperature and bending curvature arises if it is to be deployed in non-controlled environments. A 2 x 2 matrix method was thus employed for simultaneous measurement of bending curvature and temperature for the embedded LPG bending sensor. The matrix is made up of bending and temperature coefficients from 2 different fiber-types LPG; one is H2-loaded and the other is Bo/Ge co-doped. To find out the percentage error, a random test has to be carried out and the matrix was deployed for calculation. From the test results, the percentage error achieved for curvature measurement yields less than 6%. For temperature measurement, the percentage error fluctuates between 1.56% and 5.4%. The use of simultaneous measurement of both bending curvature and temperature enables researchers and engineers to measure bending of structures more accurately.
We report the design and development of a novel optical fiber Bragg grating based displacement sensor. A fiber Bragg grating is glued at a slant orientation onto the lateral side of a specially designed cantilever beam. It is found that the bandwidth of the FBG-based sensor changes linearly with the variation of displacement at the free end of the beam due to the displacement-induced strain gradient. Displacement sensing is realized by measuring the reflected optical power of the signal from the grating with a photodetector. A linear response of 37.9 mV/mm was obtained within a displacement range of 9.0 mm. This sensor is also cost effective due to the use of a simple demodulation method and is inherently temperature-insensitive; eliminating the need for temperature compensation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.