NEO Surveyor is a NASA Planetary Defense Coordination Office mission designed to detect and track >2/3 of potentially hazardous asteroids >140 m in diameter during its 5-year prime mission. NEO Surveyor entered Phase B in June 2021 and is scheduled to launch in 2026 to survey the sky in two infrared bands. The infrared detectors are a key technology for the mission and have been the subject of focused development for more than a decade. In this paper, we report test results for recently produced detectors and describe design elements of the focal plane module relevant to operations for NEO Surveyor.
Near-Earth Object (NEO) Surveyor, a NASA planetary defense space mission, is currently in Phase B with a launch date in 2026. NEO Surveyor is an infrared telescope designed to detect and characterize Potentially Hazardous Asteroids (PHAs). The required sensors leverage the space flight heritage and further development over the last 15 years of HgCdTe arrays to detect infrared light spanning from 4 to 10 μm. NEO Surveyor will employ eight passively cooled HgCdTe Sensor Chip Assemblies (SCAs) across two bands, each band consisting of a 1x4 SCA mosaic to cover a wide field of view. Four of these SCAs have a >5.5 μm cutoff wavelength and cover the shorter 4-5.2 μm (NC1) band, while four SCAs will have a >10.5 μm cutoff wavelength and span the longer 6-10 μm (NC2) band. We present calibration and performance results from two recently produced pathfinder SCAs, one for each band, manufactured by Teledyne Imaging Sensors with development guidance from the University of Arizona, the University of Rochester, and JPL. Both devices demonstrate the requisite low dark current, high well depth, and high quantum efficiency, exceeding mission requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.