We present an indirect and non-destructive optical method for domain statistic characterization in disordered nonlinear crystals, having a spatially random distribution of ferroelectric domains with homogeneous refractive index. This method, based on a combination of numerical simulations and experimental measurements, analyses the wavelengthdependent second harmonic spatial distribution. We apply this technique to the characterization of two different random media, with drastically different statistical distributions of ferroelectric domains.
We study optical properties of gradient index vortex masks based on an effective medium approach. We consider masks with single charge developed using two types of nanorods made of thermally matched low and high refractive index glasses. Optical performance of generated vortices are analyzed in terms of glass refractive index difference and spatial dimension of the components. A fabricated vortex mask has been combined with single mode optical fiber. Optical performance of the resulting fiber integrated vortex mask is characterized and discussed.
We report a development of microscopic size gradient index vortex masks using modified stack-and-draw technique. Vortex mask has a form of tens of microns thick, flat-surface all-glass plate. Its functionality is determined by internal nanostructure composed of two types of soft glass nanorods. Their spatial arrangement ensures that the average refractive index mimics continuous refractive index distribution imposing azimuthal phase modulation of optical beam. The mask of thickness of 40 microns is used to demonstrate generation of optical vortices with charges 1 and 2, in the femtosecond and cw regimes, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.