In recent years, with the development of new materials, transparent objects are playing an increasingly important role in many fields, from industrial manufacturing to military technology. However, transparent objects sensing still remains a challenging problem in the area of computational imaging and optical engineering. As an indispensable part of 3-D modeling, transparent object sensing is a long-standing research topic, which aims to reconstruct the surface shape of a given transparent object using various kinds of measurement methods. In this paper, we put forward a new method for the sensing of such objects. Specifically, we focus on the sensing of thin transparent objects, including thin films and various kinds of nano-materials. The proposed method consists of two main steps. Firstly, we use a deep convolutional neural network to predict the original distribution of the objects from its recorded intensity pattern. Secondly, the predicted results are used as initial estimates, and the iterative projection phase retrieval algorithm is performed with the enhanced priors to obtain finer reconstruction results. The numerical experiment results turned out that, with the two steps, our method is able to reconstruct the surface shape of a given thin transparent object with a high speed and simple experimental setup. Moreover, the proposed method shows a new path of transparent object sensing with the combination of state-of-art deep learning technique and conventional computational imaging algorithm. It indicates that, following the same framework, the performance of such method can be significantly improved with more advanced hardware and software implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.