To image blood vessels, we performed fundamental experiments of a red-ray computed tomography (RRCT) scanner using 650-nm-laser and high-sensitivity-photodiode (PD) modules. The line laser beam is irradiated to an object, and the photons penetrating through the object are detected using the PD module through a 1.0-mm-diameter graphite pinhole and a 0.7-mm-diameter 5-mm-length graphite collimator for the PD. The spatial resolutions were primarily determined by the collimator diameter for the PD and were approximately 0.7×0.7 mm2. RRCT was performed by repeating the reciprocating translations and rotations of the object, and the ray-sampling-translation and rotation steps were 0.1 mm and 0.5°, respectively. The image contrast was regulated using the digital amplifier, and the visible diameter of object was 0.5mm.
Photon-counting x-ray computed tomography (PCCT) is useful for selecting optimal energy photons to image various portions of the target object, and we performed fundamental experiments of PCCT to carry out gadolinium (Gd) K-edge CT using Gd-based contrast media. The scanner mainly consists of an x-ray generator with a 0.1-mm-focus tube, a turntable, a cadmium-telluride (CdTe) flat panel detector (FPD) with pixel dimensions of 100 Pm, and a personal computer. An object on the turntable is irradiated by the x-ray generator, 720 radiograms are taken using the FPD, and tomograms are reconstructed. We used 1.3-time magnification tomography, the effective pixel dimensions were approximately 80 Pm, and Gd-K-edge CT was carried out using Gd-based contrast media at a tube voltage of 100 kV, a tube current of 0.40 mA, and a threshold energy of 50 keV.
To perform energy-dispersive x-ray computed tomography (EDCT), we constructed a computer program to amplify the digital values of raw radiograms. The CT scanner consists of an x-ray generator with a 0.1-mm-focus tube, a turntable, a flat panel detector (FPD), and a personal computer (PC). An object on the turntable is irradiated by the x-ray generator, 1.3-magnified 720 radiograms are taken by the FPD, and tomograms are reconstructed using the PC. Utilizing the digital amplifier, the object projections obtained using low-energy photons disappeared with increasing amplification factor at a constant maximum value, and the effective energy increased according to increases in the amplification factor by beam hardening. Using the beam-hardening CT (BHCT) scanner, high-contrast tomography for various objects was performed by controlling effective energy. In particular, fine blood vessels were observed by K-edge CT using iodine media.
To realize novel photon-counting energy-dispersive X-ray computed tomography (CT), we have developed a low-dose CT scanner using a detector consisting of a cerium-doped yttrium aluminum perovskite [YAP(Ce)] crystal and a small photomultiplier tube (PMT). X-ray photons are absorbed by the YAP(Ce) crystal, and negative outputs are produced from the PMT. The PMT outputs are amplified by an inverse voltage-to-voltage amplifier, and the event pulses are counted by the counter with a low threshold energy of 20 keV. First, almost all the photons are counted without the photon-energy dependence, since the scintillation-photon number produced by one X-ray photon is proportional to the photon energy. Second, the energy-dispersive imaging is performed using the self-beam hardening by the object. The maximum photon count of the projection data is determined after the air absorption, and the effective photon energy increases with increasing digital-amplification factor at the constant maximum count. In the triple-energy CT, the X-ray beam diameter was 0.5 mm, and the spatial resolutions were approximately 0.3×0.3 mm2 . The exposure time for DE-CT was 9.8 min at a total rotation angle of 180°.
To realize novel energy-dispersive X-ray computed tomography (CT) and to reduce the incident dose for the object, we have developed a low-dose low-scattering CT scanner with high spatial resolutions using a room-temperature cadmium telluride (CdTe) detector. X-ray photons are absorbed by the CdTe crystal, and the electric charges flowing through the CdTe crystal are amplified using a current-to-voltage and voltage-to-voltage amplifiers. The first-generation CT is accomplished by repeated translations by the detector and rotations of the object, and the effective photon energy increases with increasing amplification factor of the digital amplifier at a constant maximum output voltage of 5.0 V. The tripleenergy computed tomography (TE-CT) is performed utilizing the beam hardening by the object. In the TE-CT, the scattering photon count is reduced using a 0.5-mm-diam pinhole behind the object, and the spatial resolution is improved by a 0.25-mm-diam pinhole. The exposure time for TE-CT was 9.8 min at a total rotation angle of 180°.
The linear-plasma flash X-ray generator consists of a high-voltage power supply, a 200-nF high-voltage condenser, a turbomolecular pump, and a demountable flash X-ray tube. In the flash X-ray generator, the condenser is charged up to 50 kV by the power supply, and flash X-rays are then produced by the vacuum discharging. The X-ray tube is a demountable triode with a rod-shaped nickel (Ni) target and a Ni reflector. The Ni-target evaporation leads to the formation of weakly ionized linear plasma, consisting of Ni ions and electrons, around the target. In the plasma, K-series characteristic X-ray photons (K photons) are produced, and bremsstrahlung photons with energies beyond the Ni-K-edge energy are absorbed by the plasma and converted into Ni-K photons. Subsequently, Ni-K photons from the Ni reflector easily penetrate the linear Ni plasma. Thus, intense Ni-K photons (rays) are irradiated from the plasma axial direction by K-ray amplification by spontaneous emission of radiation (KASER).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.