High-resolution medical images are crucial for medical diagnosis, and for planning and assisting surgery. Micro computed tomography (micro CT) can generate high-resolution 3D images and analyze internal micro-structures. However, micro CT scanners can only scan small objects and cannot be used for in-vivo clinical imaging and diagnosis. In this paper, we propose a super-resolution method to reconstruct micro CT-like images from clinical CT images based on learning a mapping function or relationship between the micro CT and clinical CT. The proposed method consists of following three steps: (1) Pre-processing: This involves the collection of pairs of clinical CT images and micro CT images for training and the registration and normalization of each pair. (2) Training: This involves learning a non-linear mapping function between the micro CT and clinical CT by using training pairs. (3) Processing (testing) step: This involves enhancing a new CT image, which is not included in the training data set, by using the learned mapping function.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.