Accurate segmentation of the prostate has many applications in the detection, diagnosis and treatment of prostate cancer. Automatic segmentation can be a challenging task because of the inhomogeneous intensity distributions on MR images. In this paper, we propose an automatic segmentation method for the prostate on MR images based on anatomy. We use the 3D U-Net guided by anatomy knowledge, including the location and shape prior knowledge of the prostate on MR images, to constrain the segmentation of the gland. The proposed method has been evaluated on the public dataset PROMISE2012. Experimental results show that the proposed method achieves a mean Dice similarity coefficient of 91.6% as compared to the manual segmentation. The experimental results indicate that the proposed method based on anatomy knowledge can achieve satisfactory segmentation performance for prostate MRI.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.