KEYWORDS: Optimization (mathematics), Solar cells, Reflectivity, Refractive index, Transmittance, Information operations, Solar energy, Dielectrics, Chemical elements, Switches
A spectrum splitter can be used to spatially multiplex different solar cells that have high efficiency in mutually exclusive parts of the solar spectrum. We investigated the use of a grating, comprising an array of dielectric cylinders embedded in a dielectric slab, for specularly transmitting one part of the solar spectrum while the other part is transmitted nonspecularly and the total reflectance is very low. A combination of (1) the rigorous coupled-wave approach for computing the reflection and transmission coefficients of the grating and (2) the differential evolution algorithm for optimizing the grating geometry and the refractive indices of dielectric materials was devised as a design tool. We used this tool to optimize two candidate gratings and obtained definite improvements to the initial guesses for the structural and constitutive parameters. Significant spectrum splitting can be achieved if the angle of incidence does not exceed 15 deg.
A spectrum splitter can be used to spatially multiplex different solar cells that have high efficiency in mutually exclusive parts of the solar spectrum. We investigated the use of a surface-relief grating made of dielectric materials for specularly transmitting one part of the solar spectrum while the other part is transmitted nonspecularly and the total reflectance is very low. A combination of (i) the rigorous coupled-wave approach for computing the reflection and transmission coeffients of the grating and (ii) the differential evolution algorithm for optimizing the grating shape was devised as a design tool. We used this tool to optimize two candidate gratings and obtained denite improvements to the initial guesses for the structural and constitutive parameters. Signicant spectrum splitting can be achieved if the angle of incidence does not exceed 15.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.