We use a novel acoustic-based flow cytometer to detect individual nanobubbles flowing in a microfluidic channel using high-frequency ultrasound and photoacoustic waves. Each individual nanobubble (or cluster of nanobubbles) flowing through the foci of high-frequency ultrasound (center frequency 375 MHz) and nanosecond laser (532 nm) pulses interacts with both pulses to generate ultrasound backscatter and photoacoustic waves. We use in-house generated nanobubbles, made of lipid shells and octafluoropropane gas core, to detect ultrasound backscatter signals using an acoustic flow cytometer. Nanobubble solutions sorted in size through differential centrifugation are diluted to 1:10,000 v/v in phosphate buffered saline solution to maximize the probability that the detected signals are from individual nanobubbles. Nanobubble populations were sized using resonant mass measurement. Results show that the amplitude of the detected ultrasound backscatter signal is dependent on the nanobubble size. The average amplitude of the ultrasound backscatter signals from at least 950 nanobubbles with an average diameter of 150 nm, 225 nm, and 350 nm was 5.1±2.5 mV, 5.3±2.3 mV, and 6.4±1.8 mV, respectively. Similarly, we detected interleaved ultrasound backscatter and photoacoustic signals from nanobubbles tagged with Sudan Black B dye. The average amplitude of the ultrasound backscatter and photoacoustic signals from these black nanobubbles with an average diameter of 238 nm is 10±11 mV and 54±75 mV, respectively. The presence of the dye on the shell suppressed unique features seen in the ultrasound backscatter from the nanobubbles without dye. At present, there is no robust commercial technique able to analyze the ultrasonic response of individual nanobubbles. The acoustic flow cytometer can potentially be used to analyze physical parameters, such as size and ultrasonic response, of individual nanobubbles.
A cell’s nucleus-to-cytoplasm (N:C) ratio is a histological metric used to stage malignant disease. Current N:C assessment methods, such as optical microscopy, are time-consuming, subjective, and low-throughput. Here, we compare the N:C ratios of prostate cancer (PC-3) cells measured by a novel microfluidic PhotoAcoustic Flow Cytometer (PAFC) to those obtained using an Imaging Flow Cytometer (IFC). PC-3 cells were stained with DRAQ-5 nuclear dye and divided into populations measured using the PAFC and IFC. The PAFC consisted of a microfluidic device integrated with a singleelement ultrasound transducer (375 MHz central frequency) and a sub-nanosecond pulsed laser (532 nm). Individual cells were 3D flow-focused through the overlapping focal region of the ultrasound and laser pulses. PAFC estimation of the cell and nucleus diameters were determined through power spectra fitting of backscattered US waves and emitted PA waves to established theoretical models. An ImageStreamX® IFC was used to acquire brightfield and fluorescent images of individual cells, which were masked, gated, and used to assess the cell (brightfield) and nucleus (fluorescence) diameter to validate the PAFC measurements. The average cell and nucleus diameters determined using the PAFC (n = 388) were 18.8 ± 3.3 μm and 14.3 ± 2.9 μm, respectively. The corresponding values from the IFC (n = 4651) were 18.3 ± 2.2 μm and 12.2 ± 1.9 μm. The N:C ratio (calculated as the ratio of the nucleus diameter to cell diameter) was 0.77 ± 0.10 using the PAFC and 0.67 ± 0.07 using the IFC. Our novel PAFC device has the potential to be used for circulation tumor cell detection using the N:C ratios of cells.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.