We investigated the correlation of the blood optical attenuation coefficient (OAC) and the blood glucose concentration (BGC). The blood OAC was measured in mouse retina in vivo through OCT angiography (OCTA). The arteries and veins presented a blood OAC change of ~0.05-0.07 mm-1 per 10 mg/dl and a significant elevation of blood OAC in diabetic mice was observed. Besides, the veins had a higher correlation coefficient between the measured blood OAC and BGC than that of the arteries. The blood OAC-BGC correlation suggests a concept of non-invasive OCTA-based glucometry, allowing a fast assessment of the blood glucose of specific vessels.
Complex decorrelation-based OCT angiography (OCTA) has the potential for quantitively monitoring hemodynamic activities. To improve the dynamic range and uncertainty for quantification, an adaptive spatial-temporal (ST) kernel was proposed. The ensemble size in decorrelation computation was enlarged by collecting samples in the spatial/ temporal dimensions. The spatial sub-kernel size was adaptively changed to suppress the bulk motion influence by solving a maximum entropy model. The improvement of dynamic range and uncertainty were validated by theoretical analyzation, numerical simulation, and in vitro/ in vivo experiments. Furthermore, proved by the in vivo experiments, the adaptive ST-kernel can also improve the separability between different stimuli and allow a reliable temporal analysis of the hemodynamic response.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.