Colorectal cancer (CRC) is one of the most common fatal cancer in the world. Polypectomy can effectively interrupt the progression of adenoma to adenocarcinoma. Colonoscopy is the primary method to find colonic polyps. However, due to the different sizes and the unclear boundary of polyps, it is challenging to segment polyps accurately. To this end, we design a Boundary Distribution Guided Network (BDG-Net) for accurate polyp segmentation. Specifically, Boundary Distribution Generate Module (BDGM) aggregates high-level features to generate Boundary Distribution Map (BDM), which is sent to the Boundary Distribution Guided Decoder (BDGD) as complementary spatial information to guide the polyp segmentation. Moreover, a multi-scale feature interaction strategy is adopted in BDGD to improve the polyp segmentation of different sizes. Extensive experiments demonstrate that BDG-Net outperforms state-of-the-art models remarkably and maintains low computational complexity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.