In veterinary practice antibiotics are used and abused all over the world both to treat diseases and prevent infections and, to increase feed efficiency thus promoting growth in food producing animals. With more than 30 years history, β−lactam antibiotics are nowadays one of the most important group of antibiotics in veterinary medicine. In this paper we investigate the possibility to realize a measurement method suitable for field testing and we propose a competitive biosensor based on a relatively low-cost chromogenic cephalosporin (CENTA) for the quantitative analysis of β−lactams concentration in milk. In particular, the reported preliminary study has been focused on cloxacillin and the reported results indicates that the method is potentially able to detect cloxacillin at a concentration of about one order of magnitude lower than the maximal residue limits (MRL) set by the European Commission.
Near-infrared spectroscopy (NIRS) is widely used in fruits and vegetables quality evaluation. This technique is also used for the analysis of alfalfa, a crop that occupies a position of great importance in the agricultural field. In particular for the storage, moisture content is a key parameter for the crops and for this reason its monitoring is very important during the harvesting phase. Usually optical methods like NIRS are well suitable in laboratory frameworks where the specimen is properly prepared, while their application during the harvesting phase presents several diffculties. A lot of influencing factors, such as density and degree of homogeneity can affect the moisture evaluation. In this paper we present the NIRS analysis of alfalfa specimens with different values of moisture and density, as well as the obtained results. To study scattering and absorption phenomena, the forward and backward scattered light from the sample have been spectrally analyzed.
We report a system, which combines electrochemical and surface plasmon resonance (SPR) techniques on the same sensing chip. Each channel of a four-channel laboratory SPR sensor is supplemented with two planar gold electrodes (the reference and the counter electrodes), whereas the gold layer of SPR chip is used as the working electrode. A custom electronics enables to set an arbitrary potential between the reference and working electrodes and to measure the current flow between the counter and the working electrodes. Information from standard electrochemical techniques, i.e. cyclovoltammetry and chronoamperometry can be acquired with the system while simultaneously monitoring the shift in the surface plasmon resonance. The electrochemical SPR biosensor was used to study desorption of thiolated DNA probes with a negative potential. By comparing the acquired electrochemical and SPR signals, we show that DNA probes as well as a monolayer of alkanethiols can be desorbed by applying negative potentials to the SPR chip surface. Moreover, it is shown that the DNA probes can be reabsorbed on the SPR sensor surface and the complementary DNA can be detected without loss in detection sensitivity.
During extracorporeal circulation (ECC), blood is periodically sampled and analyzed to maintain the blood-gas status of the patient within acceptable limits. This protocol has well-known drawbacks that may be overcome by continuous monitoring. We present the characterization of a new pH sensor for continuous monitoring in ECC. This monitoring device includes a disposable fluorescence-sensing element directly in contact with the blood, whose fluorescence intensity is strictly related to the pH of the blood. In vitro experiments show no significant difference between the blood gas analyzer values and the sensor readings; after proper calibration, it gives a correlation of R>0.9887 , and measuring errors were lower than the 3% of the pH range of interest (RoI) with respect to a commercial blood gas analyzer. This performance has been confirmed also by simulating a moderate ipothermia condition, i.e., blood temperature 32°C, frequently used in cardiac surgery. In ex vivo experiments, performed with animal models, the sensor is continuously operated in an extracorporeal undiluted blood stream for a maximum of 11 h. It gives a correlation of R>0.9431 , and a measuring error lower than the 3% of the pH RoI with respect to laboratory techniques.
The design and realization of an optical sensor for measuring haematic pH during extracorporeal
circulation is presented. It consists of a chemical sensing element in contact with the blood, an
interrogation optical head to externally probe the sensing element and the front-end electronics
to acquire and process the information of interest. The fluorescein O-methacrylate 97% is used
as the indicator. The developed system has been tested in-vitro and on an in-vivo animal model.
It showed a linear behavior in the haematic range of interest with a mean error lower than 0.01
units of pH.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.