This work reports single-frequency laser oscillation at λ = 1003.4 nm of an optically pumped external cavity semiconductor laser. By using a gain structure bonded onto a high conductivity substrate, we demonstrate both theoretically and experimentally the strong reduction of the thermal resistance of the active semiconductor medium, resulting in a high power laser emission. The spectro-temporal dynamics of the laser is also explained. Furthermore, an intracavity frequency-doubling crystal was used to obtain a stable single-mode generation of blue (λ = 501.5 nm) with an output power around 60 mW.
The optical damage behaviour of different LiNbO3 optical waveguides has been experimentally studied by measuring the intensity output of a single beam as a function of the intensity input. Parallel measurements of photovoltaic currents have been carried out as a function of the input intensity and they have been correlated with the optical damage data. The following LiNbO3 guides have been studied and compared: proton exchanged (PE) belonging to the phases alpha, beta1, beta2 and reverse proton exchanged (RPE), and Zn in-diffused waveguides. The greatest intensity thresholds for optical damage, about 2x103 times greater than that of the substrate, have been obtained in RPE guides (they support ordinary polarization and have similar nonlinear optic activity as the substrate) and beta2 guides which support extraordinary polarization (they have no nonlinear optic activity). On the other hand, the lowest photovoltaic currents have been measured in beta1,2-phases. As a function of the light intensity, the photovoltaic current exhibits a superlinear behaviour, strong in alpha-phase and weaker in Zn in-diffused and RPE guides. The results for optical damage are discussed in connection with those of photovoltaic currents, paying particular attention to the main mechanisms involved.
Fabrication characterization and operation stability of Zn-indiffused integrated optical devices in lithium niobate are described. Two examples of the operation of active waveguides fabricated by this technique are presented: laser operation of Nd3+ doped channel waveguides, and blue light generation by Quasi Phase Matching (QPM) using periodically structured substrates. In both cases ne-polarized high power denstiy CW-optical beams are involved and stable room temperature operation is sustained.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.