Optical levitation of nanoscale particles promises a completely new experiment in force sensing and the foundations of quantum physics and thermodynamics. However, most of these experiments have hardly made use of the extraordinary versatility of optical micromanipulation technology. We present a novel optical holographic trapping platform that levitates a nanosphere in vacuum in a fully controllable double-well potential. We show the power and versatility of our platform by demonstrating a generalised version of Landauer’s principle, where a memory is first encoded in an out-of-equilibrium classically-squeezed state. We infer produced work and heat over a large number of repetitions of the protocols, and we observe that the energy cost to erase a memory is greatly reduced and can in principle be made negative. Our results pave the way to fully customizable vacuum optical trapping in arbitrary potentials, and opens up to the study of non-linearities in ground-state cooled particles.
Encoding many qubits in different degrees of freedom (DOFs) of single photons is one of the routes towards enlarging the Hilbert space spanned by a photonic quantum state. Hyperentangled photon states (i.e. states showing entanglement in multiple DOFs) have demonstrated significant implications for both fundamental physics tests and quantum communication and computation. Increasing the number of qubits of photonic experiments requires miniaturization and integration of the basic elements and functions to guarantee the set-up stability. This motivates the development of technologies allowing the control of different photonic DOFs on a chip. Femtosecond laser writing on a glass makes possible to use both path and polarization of photon states enabling precise control of both degrees of freedom. We demonstrate the contextual use of path and polarization qubits propagating within a laser written integrated quantum circuit and use them to engineer a four qubit hyperentangled cluster state. We also characterized the cluster state and exploited it to perform the Grover's search algorithm following the one-way quantum computation model. In addition, we tested the non-local properties of the cluster state by using multipartite non-locality tests.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.