Femtosecond laser surface processing (FLSP) is a material processing technique used to produce self-organized micro/nanostructures on metals. The hierarchal structures can improve the surface properties of materials when applied to specific applications such as enhancing heat transfer. In this paper, we demonstrate a recently developed technique termed multi-material, multi-layer FLSP (3ML-FLSP). With 3ML-FLSP, micro/nanoscale features can be produced that are composed of multiple materials by processing surfaces using traditional FLSP techniques that are layered with thin foils of different materials. We demonstrate results with three layers of different metals (304 stainless steel, copper, and aluminum) clamped together during laser processing to create structures composed of all three metals. Ion beam milling is used to cross-section structures for subsurface analysis of the microstructure. The three metals did not mix within the bulk of the microstructures indicating that the microstructures were produced primarily through preferential removal of material around the structures. However, there was mixing of all three materials within the nanoparticle layer that covers the microstructures.
The use of self-organized micro/nanostructured surfaces formed using femtosecond laser surface processing (FLSP) techniques has become a promising area of research for enhancing surface properties of metals, with many applications including enhancing heat transfer. In this work, we demonstrate advantages of the use of dual-pulse versus single-pulse FLSP techniques to produce self-organized micro/nanostructures on copper. With the dual-pulse technique, the femtosecond pulses out of the laser (spaced 1 ms apart) are split into pulse pairs spaced < 1 ns apart and are focused collinear on the sample surface. Single-pulse FLSP techniques have been widely used to produce self-organized “mound-like” structures on a wide range of metals including a number of stainless steel alloys, aluminum, nickel, titanium, and recently on copper. Due to its high thermal conductivity, copper is used in many critical heat transfer applications and micro/nanostructured copper surfaces are desired to further improve heat transfer characteristics. Using single-pulse (pulses spaced 1 ms apart) FLSP techniques, self-organized microstructure formation on copper requires much higher pulse fluence than is commonly used for producing microstructures on other metals, which results in instabilities during laser processing (non-uniform surfaces), low processing efficiency, and limitations on the control of the types of structures produced. In this paper, we report results that demonstrate that the dual-pulse FLSP technique can be used to produce microstructures on copper more efficiently than using single-pulse FLSP, with better control of the surface structures produced. Cross-sectional subsurface microstructure analysis is also presented for single-pulse versus dual-pulse FLSP functionalized copper surfaces.
Femtosecond laser surface processing (FLSP) is a unique material processing technique that can produce self-organized micro/nanostructures on most materials including metals, semiconductors, and dielectrics. These structures have demonstrated the enhancement of surface properties such as heat transfer and broadband light absorption. The chemical composition and morphology of FLSP structures is highly dependent on processing parameters including background gas composition, pressure, laser fluence, and number of laser pulses. When the laser processing is carried out in open atmosphere, a thick oxide layer forms on the FLSP surface structures due to the high reactivity of the surface with the environmental constituents immediately after laser processing. In this work, N2 and forming gas are used during laser processing in an effort to form a metal nitride on the surface of aluminum. Aluminum nitride is a promising material for enhancing the heat transfer performance of surfaces because of its thermal conductivity, which can be as high as 285 W/m-K, whereas aluminum oxide has a low thermal conductivity (30 W/m-K). Aluminum nitride incorporation into FLSP surfaces has the potential to act as a passivation layer to decrease the oxygen content and increase the thermal conductivity of the surface. Nitrogen incorporation is studied by applying FLSP in air, N2, and a 95% N2/5% H2 mixture. The chemical composition of the FLSP surfaces is determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS). Cross-sectional analysis of the FLSP microstructures is performed using ion beam milling.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.