We are developing an adaptive secondary mirror (ASM) that uses a new actuator technology created by the Netherlands Organization for Applied Scientific Research (TNO). The TNO hybrid variable reluctance actuators have more than an order of magnitude better efficiency over the traditional voice coil actuators that have been used on existing ASMs and show potential for improving the long-term robustness and reliability of ASMs. To demonstrate the performance, operations, and serviceability of TNO’s actuators in an observatory, we have developed a 36-actuator prototype ASM for the NASA Infrared Telescope Facility (IRTF) called IRTF-ASM-1. IRTF-ASM-1 provides the first on-sky demonstration of this approach and will help us evaluate the long-term performance and use of this technology in an astronomical facility environment. We present calibration and performance results with the ASM in a Meniscus Hindle Sphere lens setup as well as preliminary on-sky results on IRTF. IRTF-ASM-1 achieved stable closed-loop performance on-sky with H-band Strehl ratios of 35-40% in long-exposure images under a variety of seeing conditions.
TNO and partners at University of Hawai’i (UH), the NASA InfraRed Telescope Facility (IRTF), and the Center for Adaptive Optics (CfAO) at UCSC have been working on the realization of a 244 mm Adaptive Secondary Mirror (ASM) for the NASA IRTF called the IRTF-ASM-1. After successful performance testing of several laboratory prototypes, this project provided the first on-sky demonstration of TNO’s ASM technology at M2 location with an optically powered mirror shell.
The ASM is designed to retrofit the current passive M2. The ASM consists of a 244mm-diameter slumped convex aspherical mirror shell, manipulated by 36 hybrid variable reluctance actuators mounted on a light-weighted backing structure. The mirror shell is manufactured to the required accuracy at reduced cost through slumping by UCSC. The mirror shell is finished to final figure with Magnetorheological Finishing (MRF) by TNO before it was coated.
The ASM was shipped to UH in Hilo in February 2024, where performance was tested in the lab. The IRTF ASM saw ‘first light’ on telescope on the 23rd of April, already achieving stable closed-loop performance that was diffraction limited at the H-band (1.62 microns) with a long-exposure Strehl ratio of 35%-40% in sub-arcsecond seeing during the first night.
This paper will report on the status and first results of the IRTF ASM, including the latest status of the deformable mirror technology at TNO and an outlook to a second generation IRTF ASM with improved dynamic performance and increased actuator count.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.