X-ray luminescence imaging emerged for about a decade and combines both the high spatial resolution of x-ray imaging with the high measurement sensitivity of optical imaging, which could result in a great molecular imaging tool for small animals. So far, there are two types of x-ray luminescence computed tomography (XLCT) imaging. One uses a pencil beam x-ray for high spatial resolution at a cost of longer measurement time. The other uses cone beam x-ray to cover the whole mouse to obtain XLCT images at a very short time but with a compromised spatial resolution. Here we review these two methods in this paper and highlight the synthesized nanophosphors by different research groups.
We are building a focused x-ray luminescence tomography (FXLT) imaging system, developing a machinelearning based FXLT reconstruction algorithm, and synthesizing nanophosphors with different emission wavelengths. In this paper, we will report our current progress from these three aspects. Briefly, we mount all main components, including the focused x-ray tube, the fiber detector, and the x-ray tube and x-ray detector for a microCT system, on a rotary which is a heavy-duty ring track. A microCT scan will be performed before FXLT scan. For a FXLT scan, we will have four PMTs to measure four fiber detectors at two different wavelengths simultaneously for each linear scan position. We expect the spatial resolution of the FXLT imaging will be around 100 micrometers and a limit of detection of approximately 2 μg/mL (for Gd2O2S:Eu).
Passive chemical and mechanical sensors were developed with readout via X-ray projection imaging (plain radiography). Physicians routinely use X-rays to image anatomy and associated pathologies because they penetrate through deep tissue and show contrast between air, soft tissue, bone, and metal hardware. However, X-rays are usually blind to local biochemical information (e.g., pH) and insensitive to small biomechanical changes (e.g., in mechanical strain and pressure). Such information is critical for studying, detecting, and monitoring pathologies associated with implanted medical hardware, such as fracture non-union and implant-associated infection. We developed sensors attached to implanted medical devices to augment plain radiographs with chemical or mechanical signals shown on a radiopaque dial. For example, a polyacrylic acid-based hydrogel with pH-dependent swelling was attached to an orthopedic plate; the local pH was then determined by measuring the position of a radiopaque tungsten indicator pin embedded within the hydrogel. The pH sensor was calibrated in standard pH buffers and tested during bacterial growth in culture. Its response was negligibly affected by changes in temperature and ionic strength within the normal physiological range. Radiographic measurements were also performed in cadaveric tissue with the sensor attached to an implanted orthopedic plate fixed to a tibia. Pin position readings varied by 100 µm between observers surveying the same radiographs, corresponding to 0.065 pH unit precision in the range pH 4-8. We have also developed mechanical pin and hydraulic fluid-level sensor to amplify and display mechanical strain/bending of orthopedic implants for monitoring bone fracture healing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.