Spinal cord injury (SCI) affects approximately 2.5 million people worldwide. The primary phase of SCI is initiated by mechanical trauma to the spinal cord, while the secondary phase involves the ensuing tissue swelling and ischemia that worsen tissue damage and functional outcome. Optimizing blood flow to the spinal cord after SCI can mitigate injury progression and improve outcome. Accurate, sensitive, real-time monitoring is critical to assessing the spinal cord perfusion status and optimizing management, particularly in those with injuries severe enough to require surgery. However, the complex anatomy of the spinal cord vasculature and surrounding structures present significant challenges to such a monitoring strategy. In this study, Doppler ultrasound was hypothesized to be a potential solution to detect and monitor spinal cord tissue perfusion in SCI patients who required spinal decompression and/or stabilization surgeries. This approach could provide real-time visual blood flow information and pulsatility of the spinal cord as biomarkers of tissue perfusion. Importantly, Doppler ultrasound could be readily integrated into the surgical workflow, because the spinal cord was exposed during surgery, thereby allowing easy access for Doppler deployment, while keeping the dura intact. Doppler ultrasound successfully measured blood flow in single and bifurcated microfluidic channels at physiologically relevant flow rates and dimensions in both in-vitro and in-vivo porcine SCI models. Furthermore, perfusion was quantified from the obtained images. Our results provide a promising and viable solution to intraoperatively assess and monitor blood flow at the SCI site to optimize tissue perfusion and improve functional recovery in SCI patients.
Cotton balls are used in neurosurgical procedures to assist with hemostasis and improve vision within the operative field. Although the surgeon can reshape pieces of cotton for multiple intraoperative uses, this customizability and scale also places them at perpetual risk of being lost, as blood-soaked cotton balls are visually similar to raw brain tissue. Retained surgical cotton can induce potentially life-threatening immunologic responses, impair postoperative imaging, lead to a textiloma or misdiagnosis, and/or require reoperation. This study investigated three imaging modalities (optical, acoustic, and radiographic) to find the most effective method of identifying foreign bodies during neurosurgery. First, we examined the use of dyes to increase contrast between cotton and surrounding parenchyma (optical approach). Second, we explored the ability to distinguish surgical cotton on or below the tissue surface from brain parenchyma using ultrasound imaging (acoustic approach). Lastly, we analyzed the ability of radiography to differentiate between brain parenchyma and cotton. Our preliminary testing demonstrated that dark-colored cotton is significantly more identifiable than white cotton on the surface level. Additional testing revealed that cotton has noticeable different acoustic characteristics (eg, speed of sound, absorption) from neural tissue, allowing for enhanced contrast in applied ultrasound imaging. Radiography, however, did not present sufficient contrast, demanding further examination. These solutions have the potential to significantly reduce the possibility of intraoperative cotton retention both on and below the surface of the brain, while still providing surgeons with traditional cotton material properties without affecting the surgical workflow.
Neurosurgery typically requires craniectomy and meticulous dissection to achieve sufficient exposure for subsequent surgical intervention. This highly invasive process requires hours of operating time, long recovery periods and leaves patients with visible surgical scars. Non-invasive high-intensity focused ultrasound (HIFU) has shown some promise yet remains challenged by the attenuation of ultrasonic waves while passing through the skull. Consequently, the clinical impact of this technology remains limited, particularly in the treatment of neuro-oncology. In order to compensate for acoustic attenuation, excessive use of power for HIFU devices has been investigated, although it is undesirable from a regulatory and patient safety standpoint. Here, we report the design and development of a novel HIFU device prototype for neurologic lesion ablation. This device concept is envisioned to access the ventricular space via a minimally invasive ventriculostomy, allowing ultrasound to reach targets deep in the brain, while eliminating the need for high power to penetrate the skull.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.