BlackCAT is a NASA-funded 6U CubeSat mission planned to be launch-ready in 2025. BlackCAT will use its wide field-of-view and arcminute-scale localization to identify gamma-ray bursts (GRBs), gravitational-wave counterparts, and other high-energy transient events. The mission will send rapid alerts after detection of a transient event, enabling prompt follow-up from other ground- and space-based observatories. The science instrument is a coded aperture telescope, using a focal plane with four Speedster-EXD550 event-driven X-ray hybrid CMOS detectors (HCDs) and a gold-plated nickel coded mask to localize source positions. We describe methods for the calibration of the detectors and the assembled coded-aperture instrument. We also briefly discuss plans for in-flight commissioning and calibration.
The BlackCAT CubeSat is an X-ray coded-aperture-telescope observatory that is expected to launch in 2025. It is designed for observations of bright X-ray sources in the 0.5–20 keV band. The instrument will have a wide field of view (0.85 steradian) and be capable of catching gamma ray bursts (GRBs) from the distant universe, galactic transients, and flares from blazars, while monitoring the X-ray sky. In addition to the primary high-redshift GRB science, BlackCAT can monitor known source variability and search for rare and exciting events including gravitational-wave X-ray counterparts, magnetar flares, supernova shock breakouts, and tidal disruption events. The mission will thus function as a multiwavelength and multi-messenger complement to present and future facilities including LIGO, VIRGO, KAGRA, IceCube, KM3NET, LSST, LOFAR, SKA, and CTA. Rapid notifications of burst positions will be transmitted to the ground via satellite network and then relayed to the GCN. The name BlackCAT is derived from its scientific emphasis on black-holerelated transient events being observed with a coded aperture telescope (CAT). BlackCAT will serve as the scientific payload aboard a commercial 6U CubeSat spacecraft provided by NanoAvionics US. Novel event-driven X-ray hybrid CMOS detectors will form the focal plane array. In addition to carrying out science programs related to distant GRBs, transients, and X-ray sky monitoring, BlackCAT will also serve as a pathfinder for future economical missions combining multiple BlackCAT modules on either a single small satellite or on multiple CubeSats. BlackCAT will also serve as a platform for new X-ray hybrid CMOS detector development. An overview of BlackCAT in its current development state and its current status will be presented.
BlackCAT is a NASA CubeSat mission planned to be launch-ready in early 2025. Using a wide-field telescope, this 6U CubeSat will monitor the soft x-ray sky, searching for high-redshift Gamma-Ray Bursts (GRBs), gravitational-wave counterparts, and other transient events. After detecting burst events, BlackCAT will be capable of transmitting rapid alerts to enable prompt follow-up observations. The instrument is composed of a coded-aperture telescope using an array of event-driven x-ray Hybrid CMOS Detectors (HCDs) in its focal plane. In this paper, we provide a brief update on the design and status of the mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.